Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):587–595. doi: 10.1042/bj3550587

Expression of P-170 glycoprotein sensitizes lymphoblastoid CEM cells to mitochondria-mediated apoptosis.

P Matarrese 1, U Testa 1, R Cauda 1, S Vella 1, L Gambardella 1, W Malorni 1
PMCID: PMC1221772  PMID: 11311119

Abstract

Multidrug resistance caused by P-glycoprotein (P-170) is a phenomenon by which cells exposed to a single drug acquire resistance to other structurally and functionally unrelated drugs. This is a widespread phenomenon described in vivo in the management of infectious as well as non-infectious diseases. Several in vitro models have been developed in order to evaluate physiopathological properties of P-170. Among these are P-170-expressing variants of the human T-lymphoblastoid CEM cell line called VBL100. As a general rule, drug resistance normally results in resistance to apoptosis induction. By contrast, a paradoxical activity is exerted in this cell model by the cytokine tumour necrosis factor-alpha (TNF-alpha), which is capable of inducing apoptosis in P-170-expressing variants better than in wild-type (wt) cells. In the present study we partially address the mechanisms underlying this activity. In fact, the susceptibility of VBL100 cells to TNF-alpha appears to be specifically due to the depolarization of their mitochondrial membrane, a key factor for apoptotic induction. The same was observed with staurosporine, a specific mitochondrion-mediated proapoptotic chemical probe. Conversely, other proapoptotic stimuli, such as Fas/CD95 or the anti-cancer drug etoposide, did induce significant cell death in wild type cells only. Thus, schematically, mitochondrially dependent stimuli appeared to be more effective in VBL100-cell killing, while 'physiological' stimuli showed the opposite behaviour. Importantly, under steady-state conditions, VBL100 cells displayed per se a mitochondrial membrane hyperpolarization that appeared strictly related to their high susceptibility to specific apoptotic stimuli. In conclusion, the study of a well-established cell model such as that represented by the wt/VBL CEM lymphoid cell line seems to suggest that the multidrug resistance phenotype can specifically sensitize cells towards 'unphysiological', mitochondria-associated cell death cascade or, in the same fashion, it could shift cells from type I (mainly plasma membrane-associated) towards type II (mainly mitochondrial membrane-associated) phenotype.

Full Text

The Full Text of this article is available as a PDF (297.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banki K., Hutter E., Gonchoroff N. J., Perl A. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol. 1999 Feb 1;162(3):1466–1479. [PMC free article] [PubMed] [Google Scholar]
  2. Boultwood J., Fidler C., Mills K. I., Frodsham P. M., Kusec R., Gaiger A., Gale R. E., Linch D. C., Littlewood T. J., Moss P. A. Amplification of mitochondrial DNA in acute myeloid leukaemia. Br J Haematol. 1996 Nov;95(2):426–431. doi: 10.1046/j.1365-2141.1996.d01-1922.x. [DOI] [PubMed] [Google Scholar]
  3. Burstein D. E., Reder I., Weiser K., Tong T., Pritsker A., Haber R. S. GLUT1 glucose transporter: a highly sensitive marker of malignancy in body cavity effusions. Mod Pathol. 1998 Apr;11(4):392–396. [PubMed] [Google Scholar]
  4. Cavalli L. R., Liang B. C. Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved? Mutat Res. 1998 Feb 26;398(1-2):19–26. doi: 10.1016/s0027-5107(97)00223-6. [DOI] [PubMed] [Google Scholar]
  5. Chan H. S., Lu Y., Grogan T. M., Haddad G., Hipfner D. R., Cole S. P., Deeley R. G., Ling V., Gallie B. L. Multidrug resistance protein (MRP) expression in retinoblastoma correlates with the rare failure of chemotherapy despite cyclosporine for reversal of P-glycoprotein. Cancer Res. 1997 Jun 15;57(12):2325–2330. [PubMed] [Google Scholar]
  6. Cianfriglia M., Willingham M. C., Tombesi M., Scagliotti G. V., Frasca G., Chersi A. P-glycoprotein epitope mapping. I. Identification of a linear human-specific epitope in the fourth loop of the P-glycoprotein extracellular domain by MM4.17 murine monoclonal antibody to human multi-drug-resistant cells. Int J Cancer. 1994 Jan 2;56(1):153–160. doi: 10.1002/ijc.2910560127. [DOI] [PubMed] [Google Scholar]
  7. Compagni A., Christofori G. Recent advances in research on multistage tumorigenesis. Br J Cancer. 2000 Jul;83(1):1–5. doi: 10.1054/bjoc.2000.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cossarizza A., Baccarani-Contri M., Kalashnikova G., Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993 Nov 30;197(1):40–45. doi: 10.1006/bbrc.1993.2438. [DOI] [PubMed] [Google Scholar]
  9. Cossarizza A., Franceschi C., Monti D., Salvioli S., Bellesia E., Rivabene R., Biondo L., Rainaldi G., Tinari A., Malorni W. Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res. 1995 Sep;220(1):232–240. doi: 10.1006/excr.1995.1311. [DOI] [PubMed] [Google Scholar]
  10. Desagher S., Martinou J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000 Sep;10(9):369–377. doi: 10.1016/s0962-8924(00)01803-1. [DOI] [PubMed] [Google Scholar]
  11. Evan G., Littlewood T. A matter of life and cell death. Science. 1998 Aug 28;281(5381):1317–1322. doi: 10.1126/science.281.5381.1317. [DOI] [PubMed] [Google Scholar]
  12. Fojo A. T., Ueda K., Slamon D. J., Poplack D. G., Gottesman M. M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987 Jan;84(1):265–269. doi: 10.1073/pnas.84.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gougeon M. L., Montagnier L. Programmed cell death as a mechanism of CD4 and CD8 T cell deletion in AIDS. Molecular control and effect of highly active anti-retroviral therapy. Ann N Y Acad Sci. 1999;887:199–212. doi: 10.1111/j.1749-6632.1999.tb07934.x. [DOI] [PubMed] [Google Scholar]
  14. Hamada H., Tsuruo T. Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7785–7789. doi: 10.1073/pnas.83.20.7785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hengartner M. O. The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770–776. doi: 10.1038/35037710. [DOI] [PubMed] [Google Scholar]
  16. Higgins C. F. The multidrug resistance P-glycoprotein. Curr Opin Cell Biol. 1993 Aug;5(4):684–687. doi: 10.1016/0955-0674(93)90140-l. [DOI] [PubMed] [Google Scholar]
  17. Huisman M. T., Smit J. W., Schinkel A. H. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS. 2000 Feb 18;14(3):237–242. doi: 10.1097/00002030-200002180-00005. [DOI] [PubMed] [Google Scholar]
  18. Isaacs J. T. Advances and controversies in the study of programmed cell death/apoptosis in the development of and therapy for cancer. Curr Opin Oncol. 1994 Jan;6(1):82–89. doi: 10.1097/00001622-199401000-00012. [DOI] [PubMed] [Google Scholar]
  19. Jia L., Allen P. D., Macey M. G., Grahn M. F., Newland A. C., Kelsey S. M. Mitochondrial electron transport chain activity, but not ATP synthesis, is required for drug-induced apoptosis in human leukaemic cells: a possible novel mechanism of regulating drug resistance. Br J Haematol. 1997 Sep;98(3):686–698. doi: 10.1046/j.1365-2141.1997.2683085.x. [DOI] [PubMed] [Google Scholar]
  20. Jia L., Dourmashkin R. R., Allen P. D., Gray A. B., Newland A. C., Kelsey S. M. Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol. 1997 Sep;98(3):673–685. doi: 10.1046/j.1365-2141.1997.2623081.x. [DOI] [PubMed] [Google Scholar]
  21. Jia L., Kelsey S. M., Grahn M. F., Jiang X. R., Newland A. C. Increased activity and sensitivity of mitochondrial respiratory enzymes to tumor necrosis factor alpha-mediated inhibition is associated with increased cytotoxicity in drug-resistant leukemic cell lines. Blood. 1996 Mar 15;87(6):2401–2410. [PubMed] [Google Scholar]
  22. Jia L., Liu K. Z., Newland A. C., Mantsch H. H., Kelsey S. M. Pgp-positive leukaemic cells have increased mtDNA but no increased rate of proliferation. Br J Haematol. 1999 Dec;107(4):861–869. doi: 10.1046/j.1365-2141.1999.01771.x. [DOI] [PubMed] [Google Scholar]
  23. Jia L., Macey M. G., Yin Y., Newland A. C., Kelsey S. M. Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis. Blood. 1999 Apr 1;93(7):2353–2359. [PubMed] [Google Scholar]
  24. Kaufmann S. H. Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):195–211. doi: 10.1016/s0167-4781(98)00136-5. [DOI] [PubMed] [Google Scholar]
  25. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  26. Larrick J. W., Wright S. C. Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J. 1990 Nov;4(14):3215–3223. doi: 10.1096/fasebj.4.14.2172061. [DOI] [PubMed] [Google Scholar]
  27. Leighton J., Schatz G. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J. 1995 Jan 3;14(1):188–195. doi: 10.1002/j.1460-2075.1995.tb06989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li P. F., Dietz R., von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999 Nov 1;18(21):6027–6036. doi: 10.1093/emboj/18.21.6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lotem J., Sachs L. Regulation by bcl-2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells. Cell Growth Differ. 1993 Jan;4(1):41–47. [PubMed] [Google Scholar]
  30. Lucia M. B., Cauda R., Landay A. L., Malorni W., Donelli G., Ortona L. Transmembrane P-glycoprotein (P-gp/P-170) in HIV infection: analysis of lymphocyte surface expression and drug-unrelated function. AIDS Res Hum Retroviruses. 1995 Aug;11(8):893–901. doi: 10.1089/aid.1995.11.893. [DOI] [PubMed] [Google Scholar]
  31. Lyon R. C., Cohen J. S., Faustino P. J., Megnin F., Myers C. E. Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy. Cancer Res. 1988 Feb 15;48(4):870–877. [PubMed] [Google Scholar]
  32. Malorni W., Rainaldi G., Tritarelli E., Rivabene R., Cianfriglia M., Lehnert M., Donelli G., Peschele C., Testa U. Tumor necrosis factor alpha is a powerful apoptotic inducer in lymphoid leukemic cells expressing the P-170 glycoprotein. Int J Cancer. 1996 Jul 17;67(2):238–247. doi: 10.1002/(SICI)1097-0215(19960717)67:2<238::AID-IJC15>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  33. Malorni W., Rivabene R., Santini M. T., Donelli G. N-acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett. 1993 Jul 19;327(1):75–78. doi: 10.1016/0014-5793(93)81043-y. [DOI] [PubMed] [Google Scholar]
  34. Mansouri A., Henle K. J., Nagle W. A., Moss A. J. Tumor cell drug resistance and its reversal. SAAS Bull Biochem Biotechnol. 1990 Jan;3:91–96. [PubMed] [Google Scholar]
  35. Matsuyama S., Llopis J., Deveraux Q. L., Tsien R. Y., Reed J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000 Jun;2(6):318–325. doi: 10.1038/35014006. [DOI] [PubMed] [Google Scholar]
  36. Mehlen P., Kretz-Remy C., Briolay J., Fostan P., Mirault M. E., Arrigo A. P. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem J. 1995 Dec 1;312(Pt 2):367–375. doi: 10.1042/bj3120367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mitsuhashi N., Miki T., Senbongi H., Yokoi N., Yano H., Miyazaki M., Nakajima N., Iwanaga T., Yokoyama Y., Shibata T. MTABC3, a novel mitochondrial ATP-binding cassette protein involved in iron homeostasis. J Biol Chem. 2000 Jun 9;275(23):17536–17540. doi: 10.1074/jbc.275.23.17536. [DOI] [PubMed] [Google Scholar]
  38. Nicotera P., Leist M., Ferrando-May E. Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp. 1999;66:69–73. doi: 10.1042/bss0660069. [DOI] [PubMed] [Google Scholar]
  39. Parlato S., Giammarioli A. M., Logozzi M., Lozupone F., Matarrese P., Luciani F., Falchi M., Malorni W., Fais S. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 2000 Oct 2;19(19):5123–5134. doi: 10.1093/emboj/19.19.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Penning L. C., Schipper R. G., Vercammen D., Verhofstad A. A., Denecker T., Beyaert R., Vandenabeele P. Sensitization of tnf-induced apoptosis with polyamine synthesis inhibitors in different human and murine tumour cell lines. Cytokine. 1998 Jun;10(6):423–431. doi: 10.1006/cyto.1997.0310. [DOI] [PubMed] [Google Scholar]
  41. Phenix B. N., Angel J. B., Mandy F., Kravcik S., Parato K., Chambers K. A., Gallicano K., Hawley-Foss N., Cassol S., Cameron D. W. Decreased HIV-associated T cell apoptosis by HIV protease inhibitors. AIDS Res Hum Retroviruses. 2000 Apr 10;16(6):559–567. doi: 10.1089/088922200308972. [DOI] [PubMed] [Google Scholar]
  42. Robertson J. D., Gogvadze V., Zhivotovsky B., Orrenius S. Distinct pathways for stimulation of cytochrome c release by etoposide. J Biol Chem. 2000 Oct 20;275(42):32438–32443. doi: 10.1074/jbc.C000518200. [DOI] [PubMed] [Google Scholar]
  43. Schmitz I., Walczak H., Krammer P. H., Peter M. E. Differences between CD95 type I and II cells detected with the CD95 ligand. Cell Death Differ. 1999 Sep;6(9):821–822. doi: 10.1038/sj.cdd.4400569. [DOI] [PubMed] [Google Scholar]
  44. St Croix B., Kerbel R. S. Cell adhesion and drug resistance in cancer. Curr Opin Oncol. 1997 Nov;9(6):549–556. doi: 10.1097/00001622-199711000-00010. [DOI] [PubMed] [Google Scholar]
  45. Ushmorov A., Ratter F., Lehmann V., Dröge W., Schirrmacher V., Umansky V. Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood. 1999 Apr 1;93(7):2342–2352. [PubMed] [Google Scholar]
  46. Walczak H., Bouchon A., Stahl H., Krammer P. H. Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2- or Bcl-xL-overexpressing chemotherapy-resistant tumor cells. Cancer Res. 2000 Jun 1;60(11):3051–3057. [PubMed] [Google Scholar]
  47. Walczak H., Krammer P. H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000 Apr 10;256(1):58–66. doi: 10.1006/excr.2000.4840. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES