Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):609–615. doi: 10.1042/bj3550609

The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase.

Y L Woods 1, P Cohen 1, W Becker 1, R Jakes 1, M Goedert 1, X Wang 1, C G Proud 1
PMCID: PMC1221774  PMID: 11311121

Abstract

The substrate specificity of glycogen synthase kinase 3 (GSK3) is unusual in that efficient phosphorylation only occurs if another phosphoserine or phosphothreonine residue is already present four residues C-terminal to the site of GSK3 phosphorylation. One such substrate is the epsilon-subunit of rat eukaryotic protein-synthesis initiation factor 2B (eIF2Bepsilon), which is inhibited by the GSK3-catalysed phosphorylation of Ser(535). There is evidence that GSK3 is only able to phosphorylate eIF2Bepsilon at Ser(535) if Ser(539) is already phosphorylated by another protein kinase. However, no protein kinases capable of phosphorylating Ser(539) have so far been identified. Here we show that Ser(539) of eIF2Bepsilon, which is followed by proline, is phosphorylated specifically by two isoforms of dual-specificity tyrosine phosphorylated and regulated kinase (DYRK2 and DYRK1A), but only weakly or not at all by other 'proline-directed' protein kinases tested. We also establish that phosphorylation of Ser(539) permits GSK3 to phosphorylate Ser(535) in vitro and that eIF2Bepsilon is highly phosphorylated at Ser(539) in vivo. The DYRK isoforms also phosphorylate human microtubule-associated protein tau at Thr(212) in vitro, a residue that is phosphorylated in foetal tau and hyperphosphorylated in filamentous tau from Alzheimer's-disease brain. Phosphorylation of Thr(212) primes tau for phosphorylation by GSK3 at Ser(208) in vitro, suggesting a more general role for DYRK isoforms in priming phosphorylation of GSK3 substrates.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker W., Weber Y., Wetzel K., Eirmbter K., Tejedor F. J., Joost H. G. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem. 1998 Oct 2;273(40):25893–25902. doi: 10.1074/jbc.273.40.25893. [DOI] [PubMed] [Google Scholar]
  2. Ben-Levy R., Leighton I. A., Doza Y. N., Attwood P., Morrice N., Marshall C. J., Cohen P. Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J. 1995 Dec 1;14(23):5920–5930. doi: 10.1002/j.1460-2075.1995.tb00280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fiol C. J., Mahrenholz A. M., Wang Y., Roeske R. W., Roach P. J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem. 1987 Oct 15;262(29):14042–14048. [PubMed] [Google Scholar]
  4. Gilligan M., Welsh G. I., Flynn A., Bujalska I., Diggle T. A., Denton R. M., Proud C. G., Docherty K. Glucose stimulates the activity of the guanine nucleotide-exchange factor eIF-2B in isolated rat islets of Langerhans. J Biol Chem. 1996 Jan 26;271(4):2121–2125. doi: 10.1074/jbc.271.4.2121. [DOI] [PubMed] [Google Scholar]
  5. Godemann R., Biernat J., Mandelkow E., Mandelkow E. M. Phosphorylation of tau protein by recombinant GSK-3beta: pronounced phosphorylation at select Ser/Thr-Pro motifs but no phosphorylation at Ser262 in the repeat domain. FEBS Lett. 1999 Jul 2;454(1-2):157–164. doi: 10.1016/s0014-5793(99)00741-3. [DOI] [PubMed] [Google Scholar]
  6. Goedert M., Jakes R., Crowther R. A., Cohen P., Vanmechelen E., Vandermeeren M., Cras P. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem J. 1994 Aug 1;301(Pt 3):871–877. doi: 10.1042/bj3010871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goedert M., Jakes R., Spillantini M. G., Hasegawa M., Smith M. J., Crowther R. A. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature. 1996 Oct 10;383(6600):550–553. doi: 10.1038/383550a0. [DOI] [PubMed] [Google Scholar]
  8. Goedert M., Spillantini M. G., Jakes R., Rutherford D., Crowther R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989 Oct;3(4):519–526. doi: 10.1016/0896-6273(89)90210-9. [DOI] [PubMed] [Google Scholar]
  9. Guimerá J., Casas C., Pucharcòs C., Solans A., Domènech A., Planas A. M., Ashley J., Lovett M., Estivill X., Pritchard M. A. A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet. 1996 Sep;5(9):1305–1310. doi: 10.1093/hmg/5.9.1305. [DOI] [PubMed] [Google Scholar]
  10. Himpel S., Tegge W., Frank R., Leder S., Joost H. G., Becker W. Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem. 2000 Jan 28;275(4):2431–2438. doi: 10.1074/jbc.275.4.2431. [DOI] [PubMed] [Google Scholar]
  11. Kassis S., Melhuish T., Annan R. S., Chen S. L., Lee J. C., Livi G. P., Creasy C. L. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. Biochem J. 2000 Jun 1;348(Pt 2):263–272. [PMC free article] [PubMed] [Google Scholar]
  12. Kentrup H., Becker W., Heukelbach J., Wilmes A., Schürmann A., Huppertz C., Kainulainen H., Joost H. G. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem. 1996 Feb 16;271(7):3488–3495. doi: 10.1074/jbc.271.7.3488. [DOI] [PubMed] [Google Scholar]
  13. Kleijn M., Welsh G. I., Scheper G. C., Voorma H. O., Proud C. G., Thomas A. A. Nerve and epidermal growth factor induce protein synthesis and eIF2B activation in PC12 cells. J Biol Chem. 1998 Mar 6;273(10):5536–5541. doi: 10.1074/jbc.273.10.5536. [DOI] [PubMed] [Google Scholar]
  14. Maucuer A., Le Caer J. P., Manceau V., Sobel A. Specific Ser-Pro phosphorylation by the RNA-recognition motif containing kinase KIS. Eur J Biochem. 2000 Jul;267(14):4456–4464. doi: 10.1046/j.1432-1327.2000.01493.x. [DOI] [PubMed] [Google Scholar]
  15. Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Titani K., Ihara Y. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem. 1995 Jan 13;270(2):823–829. doi: 10.1074/jbc.270.2.823. [DOI] [PubMed] [Google Scholar]
  16. Ohira M., Seki N., Nagase T., Suzuki E., Nomura N., Ohara O., Hattori M., Sakaki Y., Eki T., Murakami Y. Gene identification in 1.6-Mb region of the Down syndrome region on chromosome 21. Genome Res. 1997 Jan;7(1):47–58. doi: 10.1101/gr.7.1.47. [DOI] [PubMed] [Google Scholar]
  17. Shindoh N., Kudoh J., Maeda H., Yamaki A., Minoshima S., Shimizu Y., Shimizu N. Cloning of a human homolog of the Drosophila minibrain/rat Dyrk gene from "the Down syndrome critical region" of chromosome 21. Biochem Biophys Res Commun. 1996 Aug 5;225(1):92–99. doi: 10.1006/bbrc.1996.1135. [DOI] [PubMed] [Google Scholar]
  18. Smith D. J., Stevens M. E., Sudanagunta S. P., Bronson R. T., Makhinson M., Watabe A. M., O'Dell T. J., Fung J., Weier H. U., Cheng J. F. Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet. 1997 May;16(1):28–36. doi: 10.1038/ng0597-28. [DOI] [PubMed] [Google Scholar]
  19. Song W. J., Sternberg L. R., Kasten-Sportès C., Keuren M. L., Chung S. H., Slack A. C., Miller D. E., Glover T. W., Chiang P. W., Lou L. Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome "critical region". Genomics. 1996 Dec 15;38(3):331–339. doi: 10.1006/geno.1996.0636. [DOI] [PubMed] [Google Scholar]
  20. Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomas G. M., Frame S., Goedert M., Nathke I., Polakis P., Cohen P. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett. 1999 Sep 17;458(2):247–251. doi: 10.1016/s0014-5793(99)01161-8. [DOI] [PubMed] [Google Scholar]
  22. Webb B. L., Proud C. G. Eukaryotic initiation factor 2B (eIF2B). Int J Biochem Cell Biol. 1997 Oct;29(10):1127–1131. doi: 10.1016/s1357-2725(97)00039-3. [DOI] [PubMed] [Google Scholar]
  23. Welsh G. I., Miller C. M., Loughlin A. J., Price N. T., Proud C. G. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett. 1998 Jan 9;421(2):125–130. doi: 10.1016/s0014-5793(97)01548-2. [DOI] [PubMed] [Google Scholar]
  24. Welsh G. I., Miyamoto S., Price N. T., Safer B., Proud C. G. T-cell activation leads to rapid stimulation of translation initiation factor eIF2B and inactivation of glycogen synthase kinase-3. J Biol Chem. 1996 May 10;271(19):11410–11413. doi: 10.1074/jbc.271.19.11410. [DOI] [PubMed] [Google Scholar]
  25. Welsh G. I., Proud C. G. Regulation of protein synthesis in Swiss 3T3 fibroblasts. Rapid activation of the guanine-nucleotide-exchange factor by insulin and growth factors. Biochem J. 1992 May 15;284(Pt 1):19–23. doi: 10.1042/bj2840019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Welsh G. I., Stokes C. M., Wang X., Sakaue H., Ogawa W., Kasuga M., Proud C. G. Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3-kinase. FEBS Lett. 1997 Jun 30;410(2-3):418–422. doi: 10.1016/s0014-5793(97)00579-6. [DOI] [PubMed] [Google Scholar]
  27. Williams B. R. PKR; a sentinel kinase for cellular stress. Oncogene. 1999 Nov 1;18(45):6112–6120. doi: 10.1038/sj.onc.1203127. [DOI] [PubMed] [Google Scholar]
  28. Woods Y. L., Rena G., Morrice N., Barthel A., Becker W., Guo S., Unterman T. G., Cohen P. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J. 2001 May 1;355(Pt 3):597–607. doi: 10.1042/bj3550597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES