Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):617–624. doi: 10.1042/bj3550617

Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression.

R Maitra 1, P A Halpin 1, K H Karlson 1, R L Page 1, D Y Paik 1, M O Leavitt 1, B D Moyer 1, B A Stanton 1, J W Hamilton 1
PMCID: PMC1221775  PMID: 11311122

Abstract

Previous studies have demonstrated that mitomycin C (MMC) and other DNA cross-linking agents can suppress MDR1 (multidrug resistance 1) gene expression and subsequent functional P-glycoprotein (Pgp) expression, whereas doxorubicin and other anthracyclines increase MDR1 gene expression. In the present study, with stably transfected Madin-Darby canine kidney C7 epithelial cells expressing a human Pgp tagged with green fluorescent protein under the proximal human MDR1 gene promoter, we demonstrated that MMC and doxorubicin have differential effects on Pgp expression and function. Doxorubicin caused a progressive increase in the cell-surface expression of Pgp and function. In contrast, MMC initially increased plasma membrane expression and function at a time when total cellular Pgp was constant and Pgp mRNA expression had been shown to be suppressed. This was followed by a rapid and sustained decrease in cell-surface expression at later times, presumably as a consequence of the initial decrease in mRNA expression. These studies imply that there are at least two independent chemosensitive steps that can alter Pgp biogenesis: one at the level of mRNA transcription and the other at the level of Pgp trafficking. Understanding the combined consequences of these two mechanisms might lead to novel chemotherapeutic approaches to overcoming drug resistance in human cancers by altering either Pgp mRNA expression or trafficking to the membrane.

Full Text

The Full Text of this article is available as a PDF (165.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arceci R. J. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood. 1993 May 1;81(9):2215–2222. [PubMed] [Google Scholar]
  2. Biedler J. L. Drug resistance: genotype versus phenotype--thirty-second G. H. A. Clowes Memorial Award Lecture. Cancer Res. 1994 Feb 1;54(3):666–678. [PubMed] [Google Scholar]
  3. Broxterman H. J., Giaccone G., Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol. 1995 Nov;7(6):532–540. doi: 10.1097/00001622-199511000-00011. [DOI] [PubMed] [Google Scholar]
  4. Caron R. M., Hamilton J. W. Developmentally specific effects of the DNA cross-linking agent mitomycin C on phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with changes in chromatin structure within the promoter region of the gene. J Biochem Mol Toxicol. 1998;12(6):325–337. doi: 10.1002/(sici)1099-0461(1998)12:6<325::aid-jbt2>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  5. Caron R. M., Hamilton J. W. Preferential effects of the chemotherapeutic DNA crosslinking agent mitomycin C on inducible gene expression in vivo. Environ Mol Mutagen. 1995;25(1):4–11. doi: 10.1002/em.2850250103. [DOI] [PubMed] [Google Scholar]
  6. Chieli E., Santoni-Rugiu E., Cervelli F., Sabbatini A., Petrini M., Romiti N., Paolicchi A., Tongiani R. Differential modulation of P-glycoprotein expression by dexamethasone and 3-methylcholanthrene in rat hepatocyte primary cultures. Carcinogenesis. 1994 Feb;15(2):335–341. doi: 10.1093/carcin/15.2.335. [DOI] [PubMed] [Google Scholar]
  7. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  8. Davis P. B., Drumm M., Konstan M. W. Cystic fibrosis. Am J Respir Crit Care Med. 1996 Nov;154(5):1229–1256. doi: 10.1164/ajrccm.154.5.8912731. [DOI] [PubMed] [Google Scholar]
  9. Demolombe S., Escande D. ATP-binding cassette proteins as targets for drug discovery. Trends Pharmacol Sci. 1996 Aug;17(8):273–275. doi: 10.1016/0165-6147(96)10037-7. [DOI] [PubMed] [Google Scholar]
  10. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  11. Dixon A. R., Bell J., Ellis I. O., Elston C. W., Blamey R. W. P-glycoprotein expression in locally advanced breast cancer treated by neoadjuvant chemotherapy. Br J Cancer. 1992 Sep;66(3):537–541. doi: 10.1038/bjc.1992.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drumm M. L., Wilkinson D. J., Smit L. S., Worrell R. T., Strong T. V., Frizzell R. A., Dawson D. C., Collins F. S. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science. 1991 Dec 20;254(5039):1797–1799. doi: 10.1126/science.1722350. [DOI] [PubMed] [Google Scholar]
  13. Fojo A. T., Ueda K., Slamon D. J., Poplack D. G., Gottesman M. M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987 Jan;84(1):265–269. doi: 10.1073/pnas.84.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrison J. C. Measurement of hormone-stimulated protein phosphorylation in intact cells. Methods Enzymol. 1983;99:20–36. doi: 10.1016/0076-6879(83)99037-7. [DOI] [PubMed] [Google Scholar]
  15. Gottesman M. M. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 1993 Feb 15;53(4):747–754. [PubMed] [Google Scholar]
  16. Gregorcyk S., Kang Y., Brandt D., Kolm P., Singer G., Perry R. R. p-Glycoprotein expression as a predictor of breast cancer recurrence. Ann Surg Oncol. 1996 Jan;3(1):8–14. doi: 10.1007/BF02409045. [DOI] [PubMed] [Google Scholar]
  17. Hamilton J. W., Kaltreider R. C., Bajenova O. V., Ihnat M. A., McCaffrey J., Turpie B. W., Rowell E. E., Oh J., Nemeth M. J., Pesce C. A. Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Perspect. 1998 Aug;106 (Suppl 4):1005–1015. doi: 10.1289/ehp.98106s41005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamilton J. W., Wetterhahn K. E. Differential effects of chromium(VI) on constitutive and inducible gene expression in chick embryo liver in vivo and correlation with chromium(VI)-induced DNA damage. Mol Carcinog. 1989;2(5):274–286. doi: 10.1002/mc.2940020508. [DOI] [PubMed] [Google Scholar]
  19. Ihnat M. A., Lariviere J. P., Warren A. J., La Ronde N., Blaxall J. R., Pierre K. M., Turpie B. W., Hamilton J. W. Suppression of P-glycoprotein expression and multidrug resistance by DNA cross-linking agents. Clin Cancer Res. 1997 Aug;3(8):1339–1346. [PubMed] [Google Scholar]
  20. Kerbel R. S., Rak J., Kobayashi H., Man M. S., St Croix B., Graham C. H. Multicellular resistance: a new paradigm to explain aspects of acquired drug resistance of solid tumors. Cold Spring Harb Symp Quant Biol. 1994;59:661–672. doi: 10.1101/sqb.1994.059.01.076. [DOI] [PubMed] [Google Scholar]
  21. Koh E. H., Chung H. C., Lee K. B., Lim H. Y., Kim J. H., Roh J. K., Min J. S., Lee K. S., Kim B. S. The value of immunohistochemical detection of P-glycoprotein in breast cancer before and after induction chemotherapy. Yonsei Med J. 1992 Jun;33(2):137–142. doi: 10.3349/ymj.1992.33.2.137. [DOI] [PubMed] [Google Scholar]
  22. Li C., Ramjeesingh M., Reyes E., Jensen T., Chang X., Rommens J. M., Bear C. E. The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR. Nat Genet. 1993 Apr;3(4):311–316. doi: 10.1038/ng0493-311. [DOI] [PubMed] [Google Scholar]
  23. List A. F. Role of multidrug resistance and its pharmacological modulation in acute myeloid leukemia. Leukemia. 1996 Jun;10(6):937–942. [PubMed] [Google Scholar]
  24. Loo T. W., Clarke D. M. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J Biol Chem. 1997 Jan 10;272(2):709–712. doi: 10.1074/jbc.272.2.709. [DOI] [PubMed] [Google Scholar]
  25. McCaffrey J., Wolf C. M., Hamilton J. W. Effects of the genotoxic carcinogen chromium(VI) on basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with glucocorticoid- and developmentally regulated expression. Mol Carcinog. 1994 Aug;10(4):189–198. doi: 10.1002/mc.2940100403. [DOI] [PubMed] [Google Scholar]
  26. Merkel D. E., Fuqua S. A., Tandon A. K., Hill S. M., Buzdar A. U., McGuire W. L. Electrophoretic analysis of 248 clinical breast cancer specimens for P-glycoprotein overexpression or gene amplification. J Clin Oncol. 1989 Aug;7(8):1129–1136. doi: 10.1200/JCO.1989.7.8.1129. [DOI] [PubMed] [Google Scholar]
  27. Miyazaki M., Kohno K., Uchiumi T., Tanimura H., Matsuo K., Nasu M., Kuwano M. Activation of human multidrug resistance-1 gene promoter in response to heat shock stress. Biochem Biophys Res Commun. 1992 Sep 16;187(2):677–684. doi: 10.1016/0006-291x(92)91248-o. [DOI] [PubMed] [Google Scholar]
  28. Nooter K., Sonneveld P. Clinical relevance of P-glycoprotein expression in haematological malignancies. Leuk Res. 1994 Apr;18(4):233–243. doi: 10.1016/0145-2126(94)90025-6. [DOI] [PubMed] [Google Scholar]
  29. Roninson I. B. The role of the MDR1 (P-glycoprotein) gene in multidrug resistance in vitro and in vivo. Biochem Pharmacol. 1992 Jan 9;43(1):95–102. doi: 10.1016/0006-2952(92)90666-7. [DOI] [PubMed] [Google Scholar]
  30. Russell A. L., Henderson C. J., Smith G., Wolf C. R. Suppression of multi-drug resistance gene expression in the mouse liver by 1,4-bis[2,(3,5-dichloropyridyloxy)]benzene. Int J Cancer. 1994 Aug 15;58(4):550–554. doi: 10.1002/ijc.2910580417. [DOI] [PubMed] [Google Scholar]
  31. Schrenk D., Gant T. W., Michalke A., Orzechowski A., Silverman J. A., Battula N., Thorgeirsson S. S. Metabolic activation of 2-acetylaminofluorene is required for induction of multidrug resistance gene expression in rat liver cells. Carcinogenesis. 1994 Nov;15(11):2541–2546. doi: 10.1093/carcin/15.11.2541. [DOI] [PubMed] [Google Scholar]
  32. Schrenk D., Michalke A., Gant T. W., Brown P. C., Silverman J. A., Thorgeirsson S. S. Multidrug resistance gene expression in rodents and rodent hepatocytes treated with mitoxantrone. Biochem Pharmacol. 1996 Nov 8;52(9):1453–1460. doi: 10.1016/s0006-2952(96)00512-6. [DOI] [PubMed] [Google Scholar]
  33. Sheppard D. N., Ostedgaard L. S. Understanding how cystic fibrosis mutations cause a loss of Cl- channel function. Mol Med Today. 1996 Jul;2(7):290–297. doi: 10.1016/1357-4310(96)10028-9. [DOI] [PubMed] [Google Scholar]
  34. Shi T., Wrin J., Reeder J., Liu D., Ring D. B. High-affinity monoclonal antibodies against P-glycoprotein. Clin Immunol Immunopathol. 1995 Jul;76(1 Pt 1):44–51. doi: 10.1006/clin.1995.1086. [DOI] [PubMed] [Google Scholar]
  35. Silverman J. A., Hill B. A. Characterization of the basal and carcinogen regulatory elements of the rat mdr1b promoter. Mol Carcinog. 1995 May;13(1):50–59. doi: 10.1002/mc.2940130109. [DOI] [PubMed] [Google Scholar]
  36. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  37. Thorgeirsson S. S., Silverman J. A., Gant T. W., Marino P. A. Multidrug resistance gene family and chemical carcinogens. Pharmacol Ther. 1991;49(3):283–292. doi: 10.1016/0163-7258(91)90059-u. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES