Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):647–652. doi: 10.1042/bj3550647

Tissue-specific activity of lipoprotein lipase in skeletal muscle regulates the expression of uncoupling protein 3 in transgenic mouse models.

D Kratky 1, J G Strauss 1, R Zechner 1
PMCID: PMC1221779  PMID: 11311126

Abstract

Uncoupling protein (UCP)-2 and UCP-3 are two recently discovered proteins similar to UCP-1, which regulates thermogenesis in brown adipose tissue (BAT). Whereas UCP-1 expression is restricted to BAT, UCP-2 is widely expressed. UCP-3 is found mainly in skeletal muscle and BAT. A large body of evidence exists that the expression of UCP-2 and UCP-3 in skeletal muscle of mice is regulated by feeding/fasting, and some studies have suggested that this effect might be caused by the changing concentration of plasma non-esterified fatty acids (NEFAs). In an attempt to determine whether the increased import of triacylglycerol-derived NEFAs can also affect UCP expression, we determined the mRNA levels of UCP-1, UCP-2 and UCP-3 in BAT and muscle of induced mutant mouse lines that overexpressed or lacked lipoprotein lipase (LPL) in these tissues. The expression levels of UCP-1 and UCP-2 in BAT and in skeletal and cardiac muscle respectively were not affected by variations in tissue LPL activities. In contrast, UCP-3 mRNA levels were induced 3.4-fold in mice with high levels of LPL in skeletal muscle, and down-regulated in mice that lacked LPL in skeletal muscle. The presence or absence of LPL in BAT had no effect on UCP-3 expression levels. The response of UCP-3 mRNA expression to variations in LPL activity in skeletal muscle was independent of the feeding status or of plasma NEFA concentrations. These findings indicated that NEFAs as lipolytic products of LPL-mediated triacylglycerol hydrolysis markedly affect UCP-3 expression and that increased LPL activities occurring during fasting in skeletal muscle contribute to the induction of UCP-3 expression by promoting the increased uptake of NEFAs. In addition, our results demonstrate that UCP-2 and UCP-3 are differentially regulated in response to LPL-mediated NEFA uptake in skeletal muscle of mice.

Full Text

The Full Text of this article is available as a PDF (172.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arsenijevic D., Onuma H., Pecqueur C., Raimbault S., Manning B. S., Miroux B., Couplan E., Alves-Guerra M. C., Goubern M., Surwit R. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000 Dec;26(4):435–439. doi: 10.1038/82565. [DOI] [PubMed] [Google Scholar]
  2. Bao S., Kennedy A., Wojciechowski B., Wallace P., Ganaway E., Garvey W. T. Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: effects of obesity and diabetes. Diabetes. 1998 Dec;47(12):1935–1940. doi: 10.2337/diabetes.47.12.1935. [DOI] [PubMed] [Google Scholar]
  3. Boss O., Bobbioni-Harsch E., Assimacopoulos-Jeannet F., Muzzin P., Munger R., Giacobino J. P., Golay A. Uncoupling protein-3 expression in skeletal muscle and free fatty acids in obesity. Lancet. 1998 Jun 27;351(9120):1933–1933. doi: 10.1016/S0140-6736(05)78617-7. [DOI] [PubMed] [Google Scholar]
  4. Boss O., Samec S., Dulloo A., Seydoux J., Muzzin P., Giacobino J. P. Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold. FEBS Lett. 1997 Jul 21;412(1):111–114. doi: 10.1016/s0014-5793(97)00755-2. [DOI] [PubMed] [Google Scholar]
  5. Boss O., Samec S., Paoloni-Giacobino A., Rossier C., Dulloo A., Seydoux J., Muzzin P., Giacobino J. P. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997 May 12;408(1):39–42. doi: 10.1016/s0014-5793(97)00384-0. [DOI] [PubMed] [Google Scholar]
  6. Cabrero A., Llaverías G., Roglans N., Alegret M., Sánchez R., Adzet T., Laguna J. C., Vázquez M. Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats. Biochem Biophys Res Commun. 1999 Jul 5;260(2):547–556. doi: 10.1006/bbrc.1999.0926. [DOI] [PubMed] [Google Scholar]
  7. Clapham J. C., Arch J. R., Chapman H., Haynes A., Lister C., Moore G. B., Piercy V., Carter S. A., Lehner I., Smith S. A. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000 Jul 27;406(6794):415–418. doi: 10.1038/35019082. [DOI] [PubMed] [Google Scholar]
  8. Coleman T., Seip R. L., Gimble J. M., Lee D., Maeda N., Semenkovich C. F. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem. 1995 May 26;270(21):12518–12525. doi: 10.1074/jbc.270.21.12518. [DOI] [PubMed] [Google Scholar]
  9. Eckel R. H., Jensen D. R., Schlaepfer I. R., Yost T. J. Tissue-specific regulation of lipoprotein lipase by isoproterenol in normal-weight humans. Am J Physiol. 1996 Nov;271(5 Pt 2):R1280–R1286. doi: 10.1152/ajpregu.1996.271.5.R1280. [DOI] [PubMed] [Google Scholar]
  10. Enerbäck S., Jacobsson A., Simpson E. M., Guerra C., Yamashita H., Harper M. E., Kozak L. P. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997 May 1;387(6628):90–94. doi: 10.1038/387090a0. [DOI] [PubMed] [Google Scholar]
  11. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  12. Foster D. O., Frydman M. L. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol. 1978 Feb;56(1):110–122. doi: 10.1139/y78-015. [DOI] [PubMed] [Google Scholar]
  13. Foster D. O., Frydman M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol. 1979 Mar;57(3):257–270. doi: 10.1139/y79-039. [DOI] [PubMed] [Google Scholar]
  14. Frayn K. N., Coppack S. W., Fielding B. A., Humphreys S. M. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzyme Regul. 1995;35:163–178. doi: 10.1016/0065-2571(94)00011-q. [DOI] [PubMed] [Google Scholar]
  15. Gong D. W., He Y., Karas M., Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997 Sep 26;272(39):24129–24132. doi: 10.1074/jbc.272.39.24129. [DOI] [PubMed] [Google Scholar]
  16. Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
  17. Hamann A., Flier J. S., Lowell B. B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology. 1996 Jan;137(1):21–29. doi: 10.1210/endo.137.1.8536614. [DOI] [PubMed] [Google Scholar]
  18. Hwang C. S., Lane M. D. Up-regulation of uncoupling protein-3 by fatty acid in C2C12 myotubes. Biochem Biophys Res Commun. 1999 May 10;258(2):464–469. doi: 10.1006/bbrc.1999.0662. [DOI] [PubMed] [Google Scholar]
  19. Kelly L. J., Vicario P. P., Thompson G. M., Candelore M. R., Doebber T. W., Ventre J., Wu M. S., Meurer R., Forrest M. J., Conner M. W. Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology. 1998 Dec;139(12):4920–4927. doi: 10.1210/endo.139.12.6384. [DOI] [PubMed] [Google Scholar]
  20. Khalfallah Y., Fages S., Laville M., Langin D., Vidal H. Regulation of uncoupling protein-2 and uncoupling protein-3 mRNA expression during lipid infusion in human skeletal muscle and subcutaneous adipose tissue. Diabetes. 2000 Jan;49(1):25–31. doi: 10.2337/diabetes.49.1.25. [DOI] [PubMed] [Google Scholar]
  21. Klingenberg M., Huang S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1999 Jan 8;1415(2):271–296. doi: 10.1016/s0005-2736(98)00232-6. [DOI] [PubMed] [Google Scholar]
  22. Larkin S., Mull E., Miao W., Pittner R., Albrandt K., Moore C., Young A., Denaro M., Beaumont K. Regulation of the third member of the uncoupling protein family, UCP3, by cold and thyroid hormone. Biochem Biophys Res Commun. 1997 Nov 7;240(1):222–227. doi: 10.1006/bbrc.1997.7636. [DOI] [PubMed] [Google Scholar]
  23. Levak-Frank S., Hofmann W., Weinstock P. H., Radner H., Sattler W., Breslow J. L., Zechner R. Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3165–3170. doi: 10.1073/pnas.96.6.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levak-Frank S., Radner H., Walsh A., Stollberger R., Knipping G., Hoefler G., Sattler W., Weinstock P. H., Breslow J. L., Zechner R. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest. 1995 Aug;96(2):976–986. doi: 10.1172/JCI118145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Levak-Frank S., Weinstock P. H., Hayek T., Verdery R., Hofmann W., Ramakrishnan R., Sattler W., Breslow J. L., Zechner R. Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. J Biol Chem. 1997 Jul 4;272(27):17182–17190. doi: 10.1074/jbc.272.27.17182. [DOI] [PubMed] [Google Scholar]
  26. Lowell B. B., S-Susulic V., Hamann A., Lawitts J. A., Himms-Hagen J., Boyer B. B., Kozak L. P., Flier J. S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993 Dec 23;366(6457):740–742. doi: 10.1038/366740a0. [DOI] [PubMed] [Google Scholar]
  27. Millet L., Vidal H., Andreelli F., Larrouy D., Riou J. P., Ricquier D., Laville M., Langin D. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 1997 Dec 1;100(11):2665–2670. doi: 10.1172/JCI119811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ricquier D., Bouillaud F. The mitochondrial uncoupling protein: structural and genetic studies. Prog Nucleic Acid Res Mol Biol. 1997;56:83–108. doi: 10.1016/s0079-6603(08)61003-x. [DOI] [PubMed] [Google Scholar]
  29. Ricquier D., Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000 Jan 15;345(Pt 2):161–179. [PMC free article] [PubMed] [Google Scholar]
  30. Samec S., Seydoux J., Dulloo A. G. Interorgan signaling between adipose tissue metabolism and skeletal muscle uncoupling protein homologs: is there a role for circulating free fatty acids? Diabetes. 1998 Nov;47(11):1693–1698. doi: 10.2337/diabetes.47.11.1693. [DOI] [PubMed] [Google Scholar]
  31. Samec S., Seydoux J., Dulloo A. G. Post-starvation gene expression of skeletal muscle uncoupling protein 2 and uncoupling protein 3 in response to dietary fat levels and fatty acid composition: a link with insulin resistance. Diabetes. 1999 Feb;48(2):436–441. doi: 10.2337/diabetes.48.2.436. [DOI] [PubMed] [Google Scholar]
  32. Samec S., Seydoux J., Dulloo A. G. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 1998 Jun;12(9):715–724. doi: 10.1096/fasebj.12.9.715. [DOI] [PubMed] [Google Scholar]
  33. Silva J. E., Rabelo R. Regulation of the uncoupling protein gene expression. Eur J Endocrinol. 1997 Mar;136(3):251–264. doi: 10.1530/eje.0.1360251. [DOI] [PubMed] [Google Scholar]
  34. Skulachev V. P. Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg Biomembr. 1999 Oct;31(5):431–445. doi: 10.1023/a:1005492205984. [DOI] [PubMed] [Google Scholar]
  35. Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
  36. Vidal-Puig A., Rosenbaum M., Considine R. C., Leibel R. L., Dohm G. L., Lowell B. B. Effects of obesity and stable weight reduction on UCP2 and UCP3 gene expression in humans. Obes Res. 1999 Mar;7(2):133–140. doi: 10.1002/j.1550-8528.1999.tb00694.x. [DOI] [PubMed] [Google Scholar]
  37. Weigle D. S., Selfridge L. E., Schwartz M. W., Seeley R. J., Cummings D. E., Havel P. J., Kuijper J. L., BeltrandelRio H. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes. 1998 Feb;47(2):298–302. doi: 10.2337/diab.47.2.298. [DOI] [PubMed] [Google Scholar]
  38. Weinstock P. H., Bisgaier C. L., Aalto-Setälä K., Radner H., Ramakrishnan R., Levak-Frank S., Essenburg A. D., Zechner R., Breslow J. L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995 Dec;96(6):2555–2568. doi: 10.1172/JCI118319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yoshitomi H., Yamazaki K., Abe S., Tanaka I. Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment. Biochem Biophys Res Commun. 1998 Dec 9;253(1):85–91. doi: 10.1006/bbrc.1998.9746. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES