Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):671–679. doi: 10.1042/bj3550671

Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically.

N M Steele 1, Z Sulová 1, P Campbell 1, J Braam 1, V Farkas 1, S C Fry 1
PMCID: PMC1221782  PMID: 11311129

Abstract

To map the preferred cleavage sites of xyloglucan endotransglycosylases (XETs; EC 2.4.1.207) along the donor substrate chain, we incubated the enzymes with tamarind (Tamarindus indica) xyloglucan (donor substrate; approximately 205 kDa; 21 microM) plus the nonasaccharide [(3)H]XLLGol (Gal(2).Xyl(3).Glc(3). [(3)H]glucitol; acceptor substrate; 0.6 microM). After short incubation times, to minimize multiple cleavages, the size of the (3)H-labelled transglycosylation products (determined by gel-permeation chromatography) indicated the positions of the cleavage sites relative to the non-reducing terminus of the donor. There was very little difference between the size profiles of the products formed by any of ten XETs tested [one native XET purified from cauliflower (Brassica oleracea) florets, four native XET isoenzymes purified from etiolated mung-bean (Phaseolus aureus) shoots, native XETs purified from lentil (Lens culinaris) and nasturtium (Tropaeolum majus) seeds, and three insect-cell-produced thale-cress (Arabidopsis thaliana) XETs (EXGT, TCH4 and MERI-5)]. All such product profiles showed a good fit to a model in which the enzyme chooses its donor substrate independently of size and attacks it, once only, at a randomly selected cleavage site. The results therefore do not support the hypothesis that different XET isoenzymes are adapted to produce longer or shorter products such as might favour either the efficient integration of new xyloglucan into the cell wall or the re-structuring of old xyloglucan within an expanding wall.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz D. M., Purugganan M. M., Polisensky D. H., Braam J. Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation. Plant Physiol. 1997 Dec;115(4):1319–1328. doi: 10.1104/pp.115.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrowsmith D. A., de Silva J. Characterisation of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol Biol. 1995 Jun;28(3):391–403. doi: 10.1007/BF00020389. [DOI] [PubMed] [Google Scholar]
  3. Campbell P., Braam J. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J. 1999 May;18(4):371–382. doi: 10.1046/j.1365-313x.1999.00459.x. [DOI] [PubMed] [Google Scholar]
  4. Campbell P., Braam J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 1999 Sep;4(9):361–366. doi: 10.1016/s1360-1385(99)01468-5. [DOI] [PubMed] [Google Scholar]
  5. Fanutti C., Gidley M. J., Reid J. S. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1-->4)-beta-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 1993 May;3(5):691–700. doi: 10.1046/j.1365-313x.1993.03050691.x. [DOI] [PubMed] [Google Scholar]
  6. Fanutti C., Gidley M. J., Reid J. S. Substrate subsite recognition of the xyloglucan endo-transglycosylase or xyloglucan-specific endo-(1-->4)-beta-D-glucanase from the cotyledons of germinated nasturtium (Tropaeolum majus L.) seeds. Planta. 1996;200(2):221–228. doi: 10.1007/BF00208312. [DOI] [PubMed] [Google Scholar]
  7. Fry S. C., Smith R. C., Renwick K. F., Martin D. J., Hodge S. K., Matthews K. J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992 Mar 15;282(Pt 3):821–828. doi: 10.1042/bj2820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maclachlan G., Brady C. Endo-1,4-[beta]-Glucanase, Xyloglucanase, and Xyloglucan Endo-Transglycosylase Activities Versus Potential Substrates in Ripening Tomatoes. Plant Physiol. 1994 Jul;105(3):965–974. doi: 10.1104/pp.105.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Medford J. I., Elmer J. S., Klee H. J. Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell. 1991 Apr;3(4):359–370. doi: 10.1105/tpc.3.4.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nishitani K. The role of endoxyloglucan transferase in the organization of plant cell walls. Int Rev Cytol. 1997;173:157–206. doi: 10.1016/s0074-7696(08)62477-8. [DOI] [PubMed] [Google Scholar]
  11. Nishitani K., Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992 Oct 15;267(29):21058–21064. [PubMed] [Google Scholar]
  12. Potter I., Fry S. C. Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid. Plant Physiol. 1993 Sep;103(1):235–241. doi: 10.1104/pp.103.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Redgwell R. J., Fry S. C. Xyloglucan Endotransglycosylase Activity Increases during Kiwifruit (Actinidia deliciosa) Ripening (Implications for Fruit Softening). Plant Physiol. 1993 Dec;103(4):1399–1406. doi: 10.1104/pp.103.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rose J. K., Brummell D. A., Bennett A. B. Two divergent xyloglucan endotransglycosylases exhibit mutually exclusive patterns of expression in nasturtium. Plant Physiol. 1996 Feb;110(2):493–499. doi: 10.1104/pp.110.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saab I. N., Sachs M. M. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol. 1996 Sep;112(1):385–391. doi: 10.1104/pp.112.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schröder R., Atkinson R. G., Langenkämper G., Redgwell R. J. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta. 1998 Feb;204(2):242–251. doi: 10.1007/s004250050253. [DOI] [PubMed] [Google Scholar]
  17. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steele N. M., Fry S. C. Differences in catalytic properties between native isoenzymes of xyloglucan endotransglycosylase (XET). Phytochemistry. 2000 Aug;54(7):667–680. doi: 10.1016/s0031-9422(00)00203-x. [DOI] [PubMed] [Google Scholar]
  19. Steele N. M., Fry S. C. Purification of xyloglucan endotransglycosylases (XETs): a generally applicable and simple method based on reversible formation of an enzyme-substrate complex. Biochem J. 1999 May 15;340(Pt 1):207–211. [PMC free article] [PubMed] [Google Scholar]
  20. Sulová Z., Farkas V. Purification of xyloglucan endotransglycosylase based on affinity sorption of the active glycosyl-enzyme intermediate complex to cellulose. Protein Expr Purif. 1999 Jul;16(2):231–235. doi: 10.1006/prep.1999.1043. [DOI] [PubMed] [Google Scholar]
  21. Sulová Z., Lednická M., Farkas V. A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Anal Biochem. 1995 Jul 20;229(1):80–85. doi: 10.1006/abio.1995.1381. [DOI] [PubMed] [Google Scholar]
  22. Sulová Z., Takácová M., Steele N. M., Fry S. C., Farkas V. Xyloglucan endotransglycosylase: evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochem J. 1998 Mar 15;330(Pt 3):1475–1480. doi: 10.1042/bj3301475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson J. E., Fry S. C. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta. 2000 Jul;211(2):275–286. doi: 10.1007/s004250000287. [DOI] [PubMed] [Google Scholar]
  24. Thompson J. E., Smith R. C., Fry S. C. Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J. 1997 Nov 1;327(Pt 3):699–708. doi: 10.1042/bj3270699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vissenberg K., Martinez-Vilchez I. M., Verbelen J. P., Miller J. G., Fry S. C. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell. 2000 Jul;12(7):1229–1237. doi: 10.1105/tpc.12.7.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu W., Campbell P., Vargheese A. K., Braam J. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J. 1996 Jun;9(6):879–889. doi: 10.1046/j.1365-313x.1996.9060879.x. [DOI] [PubMed] [Google Scholar]
  27. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zurek D. M., Clouse S. D. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol. 1994 Jan;104(1):161–170. doi: 10.1104/pp.104.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Buuren M. L., Maldonado-Mendoza I. E., Trieu A. T., Blaylock L. A., Harrison M. J. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol Plant Microbe Interact. 1999 Mar;12(3):171–181. doi: 10.1094/MPMI.1999.12.3.171. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES