Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):691–697. doi: 10.1042/bj3550691

Involvement of Hic-5 in platelet activation: integrin alphaIIbbeta3-dependent tyrosine phosphorylation and association with proline-rich tyrosine kinase 2.

M Osada 1, T Ohmori 1, Y Yatomi 1, K Satoh 1, S Hosogaya 1, Y Ozaki 1
PMCID: PMC1221784  PMID: 11311131

Abstract

Hic-5 and paxillin, members of the LIM protein family, have been shown to be localized in focal adhesion and to have a role in integrin-mediated signalling. In the present study we examined the involvement of Hic-5 in human platelet activation: platelets express Hic-5 but not paxillin, whereas human umbilical-vein vascular endothelial cells and MEG-01 cells express mainly paxillin. When platelets were stimulated with thrombin, collagen or the stable thromboxane A(2) analogue U46619, Hic-5 was markedly tyrosine-phosphorylated, in a manner dependent on integrin alphaIIbbeta3-mediated aggregation. In addition, direct activation of protein kinase C with PMA resulted in tyrosine phosphorylation of Hic-5 only when platelets were fully aggregated with the exogenous addition of fibrinogen. Furthermore, PMA-induced Hic-5 tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. In studies on immunoprecipitation and immunodepletion, Hic-5 seemed to associate with proline-rich tyrosine kinase 2 (Pyk2) but only marginally with focal adhesion kinase. When platelets were stimulated with thrombin, both Hic-5 and Pyk2 translocated to the cytoskeleton from the cytosol and membrane fractions in a manner dependent on alphaIIbbeta3-mediated aggregation. Finally, on stimulation with PMA, Hic-5, as well as Pyk2, translocated to the cell periphery, where a meshwork of actin filaments assembled after adhesion to immobilized fibrinogen. Our results suggest that Hic-5 might be important in platelet aggregation and adhesion, in a manner dependent on alphaIIbbeta3-mediated outside-in signalling, through association with Pyk2.

Full Text

The Full Text of this article is available as a PDF (235.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asazuma N., Ozaki Y., Satoh K., Yatomi Y., Handa M., Fujimura Y., Miura S., Kume S. Glycoprotein Ib-von Willebrand factor interactions activate tyrosine kinases in human platelets. Blood. 1997 Dec 15;90(12):4789–4798. [PubMed] [Google Scholar]
  2. Avraham S., Avraham H. Characterization of the novel focal adhesion kinase RAFTK in hematopoietic cells. Leuk Lymphoma. 1997 Oct;27(3-4):247–256. doi: 10.3109/10428199709059681. [DOI] [PubMed] [Google Scholar]
  3. Block K. L., Poncz M. Platelet glycoprotein IIb gene expression as a model of megakaryocyte-specific expression. Stem Cells. 1995 Mar;13(2):135–145. doi: 10.1002/stem.5530130205. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brass L. F., Manning D. R., Cichowski K., Abrams C. S. Signaling through G proteins in platelets: to the integrins and beyond. Thromb Haemost. 1997 Jul;78(1):581–589. [PubMed] [Google Scholar]
  6. Ferrell J. E., Jr, Martin G. S. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2234–2238. doi: 10.1073/pnas.86.7.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox J. E., Lipfert L., Clark E. A., Reynolds C. C., Austin C. D., Brugge J. S. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21ras GTPase-activating protein with the membrane skeleton. J Biol Chem. 1993 Dec 5;268(34):25973–25984. [PubMed] [Google Scholar]
  8. Fujita H., Kamiguchi K., Cho D., Shibanuma M., Morimoto C., Tachibana K. Interaction of Hic-5, A senescence-related protein, with focal adhesion kinase. J Biol Chem. 1998 Oct 9;273(41):26516–26521. doi: 10.1074/jbc.273.41.26516. [DOI] [PubMed] [Google Scholar]
  9. Gao J., Zoller K. E., Ginsberg M. H., Brugge J. S., Shattil S. J. Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3. EMBO J. 1997 Nov 3;16(21):6414–6425. doi: 10.1093/emboj/16.21.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagmann J., Grob M., Welman A., van Willigen G., Burger M. M. Recruitment of the LIM protein hic-5 to focal contacts of human platelets. J Cell Sci. 1998 Aug;111(Pt 15):2181–2188. doi: 10.1242/jcs.111.15.2181. [DOI] [PubMed] [Google Scholar]
  11. Hisano N., Yatomi Y., Satoh K., Akimoto S., Mitsumata M., Fujino M. A., Ozaki Y. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. Blood. 1999 Jun 15;93(12):4293–4299. [PubMed] [Google Scholar]
  12. Ishino K., Kaneyama, Shibanuma M., Nose K. Specific decrease in the level of Hic-5, a focal adhesion protein, during immortalization of mouse embryonic fibroblasts, and its association with focal adhesion kinase. J Cell Biochem. 2000 Jan;76(3):411–419. doi: 10.1002/(sici)1097-4644(20000301)76:3<411::aid-jcb9>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  13. Ishino M., Aoto H., Sasaski H., Suzuki R., Sasaki T. Phosphorylation of Hic-5 at tyrosine 60 by CAKbeta and Fyn. FEBS Lett. 2000 Jun 2;474(2-3):179–183. doi: 10.1016/s0014-5793(00)01597-0. [DOI] [PubMed] [Google Scholar]
  14. Jackson S. P., Schoenwaelder S. M., Yuan Y., Salem H. H., Cooray P. Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost. 1996 Nov;76(5):640–650. [PubMed] [Google Scholar]
  15. Law D. A., DeGuzman F. R., Heiser P., Ministri-Madrid K., Killeen N., Phillips D. R. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function. Nature. 1999 Oct 21;401(6755):808–811. doi: 10.1038/44599. [DOI] [PubMed] [Google Scholar]
  16. Levy-Toledano S., Gallet C., Nadal F., Bryckaert M., Maclouf J., Rosa J. P. Phosphorylation and dephosphorylation mechanisms in platelet function: a tightly regulated balance. Thromb Haemost. 1997 Jul;78(1):226–233. [PubMed] [Google Scholar]
  17. Matsuya M., Sasaki H., Aoto H., Mitaka T., Nagura K., Ohba T., Ishino M., Takahashi S., Suzuki R., Sasaki T. Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem. 1998 Jan 9;273(2):1003–1014. doi: 10.1074/jbc.273.2.1003. [DOI] [PubMed] [Google Scholar]
  18. Mazaki Y., Hashimoto S., Sabe H. Monocyte cells and cancer cells express novel paxillin isoforms with different binding properties to focal adhesion proteins. J Biol Chem. 1997 Mar 14;272(11):7437–7444. doi: 10.1074/jbc.272.11.7437. [DOI] [PubMed] [Google Scholar]
  19. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  20. Oda A., Miyakawa Y., Druker B. J., Ozaki K., Ohashi H., Kato T., Miyazaki H., Handa M., Ikebuchi K., Ikeda Y. Thrombopoietin-induced signal transduction and potentiation of platelet activation. Thromb Haemost. 1999 Aug;82(2):377–384. [PubMed] [Google Scholar]
  21. Ogura M., Morishima Y., Ohno R., Kato Y., Hirabayashi N., Nagura H., Saito H. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood. 1985 Dec;66(6):1384–1392. [PubMed] [Google Scholar]
  22. Ohmori T., Yatomi Y., Asazuma N., Satoh K., Ozaki Y. Involvement of proline-rich tyrosine kinase 2 in platelet activation: tyrosine phosphorylation mostly dependent on alphaIIbbeta3 integrin and protein kinase C, translocation to the cytoskeleton and association with Shc through Grb2. Biochem J. 2000 Apr 15;347(Pt 2):561–569. doi: 10.1042/0264-6021:3470561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohmori T., Yatomi Y., Asazuma N., Satoh K., Ozaki Y. Suppression of protein kinase C is associated with inhibition of PYK2 tyrosine phosphorylation and enhancement of PYK2 interaction with Src in thrombin-activated platelets. Thromb Res. 1999 Mar 15;93(6):291–298. doi: 10.1016/s0049-3848(98)00188-1. [DOI] [PubMed] [Google Scholar]
  24. Ozaki K., Oda A., Wakao H., Rhodes J., Druker B. J., Ishida A., Wakui M., Okamoto S., Morita K., Handa M. Thrombopoietin induces association of Crkl with STAT5 but not STAT3 in human platelets. Blood. 1998 Dec 15;92(12):4652–4662. [PubMed] [Google Scholar]
  25. Ozaki Y., Satoh K., Kuroda K., Qi R., Yatomi Y., Yanagi S., Sada K., Yamamura H., Yanabu M., Nomura S. Anti-CD9 monoclonal antibody activates p72syk in human platelets. J Biol Chem. 1995 Jun 23;270(25):15119–15124. doi: 10.1074/jbc.270.25.15119. [DOI] [PubMed] [Google Scholar]
  26. Rozengurt E. Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists. J Cell Physiol. 1998 Dec;177(4):507–517. doi: 10.1002/(SICI)1097-4652(199812)177:4<507::AID-JCP2>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  27. Schaller M. D., Parsons J. T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol. 1995 May;15(5):2635–2645. doi: 10.1128/mcb.15.5.2635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schaller M. D., Sasaki T. Differential signaling by the focal adhesion kinase and cell adhesion kinase beta. J Biol Chem. 1997 Oct 3;272(40):25319–25325. doi: 10.1074/jbc.272.40.25319. [DOI] [PubMed] [Google Scholar]
  29. Schlaepfer D. D., Hauck C. R., Sieg D. J. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999;71(3-4):435–478. doi: 10.1016/s0079-6107(98)00052-2. [DOI] [PubMed] [Google Scholar]
  30. Shattil S. J., Kashiwagi H., Pampori N. Integrin signaling: the platelet paradigm. Blood. 1998 Apr 15;91(8):2645–2657. [PubMed] [Google Scholar]
  31. Shibanuma M., Mashimo J., Kuroki T., Nose K. Characterization of the TGF beta 1-inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J Biol Chem. 1994 Oct 28;269(43):26767–26774. [PubMed] [Google Scholar]
  32. Shibanuma M., Nose K. Forced expression of hic-5, a senescence-related gene, potentiates a differentiation process of RCT-1 cells induced by retinoic acid. Int J Biochem Cell Biol. 1998 Jan;30(1):39–45. doi: 10.1016/s1357-2725(97)00155-6. [DOI] [PubMed] [Google Scholar]
  33. Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
  34. Thomas S. M., Hagel M., Turner C. E. Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci. 1999 Jan;112(Pt 2):181–190. doi: 10.1242/jcs.112.2.181. [DOI] [PubMed] [Google Scholar]
  35. Turner C. E. Paxillin. Int J Biochem Cell Biol. 1998 Sep;30(9):955–959. doi: 10.1016/s1357-2725(98)00062-4. [DOI] [PubMed] [Google Scholar]
  36. Watson S. P. Collagen receptor signaling in platelets and megakaryocytes. Thromb Haemost. 1999 Aug;82(2):365–376. [PubMed] [Google Scholar]
  37. Wilkinson S. E., Parker P. J., Nixon J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J. 1993 Sep 1;294(Pt 2):335–337. doi: 10.1042/bj2940335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhang J., Zhang L. X., Meltzer P. S., Barrett J. C., Trent J. M. Molecular cloning of human Hic-5, a potential regulator involved in signal transduction and cellular senescence. Mol Carcinog. 2000 Mar;27(3):177–183. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES