Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):707–713. doi: 10.1042/bj3550707

Characterization of PHEX endopeptidase catalytic activity: identification of parathyroid-hormone-related peptide107-139 as a substrate and osteocalcin, PPi and phosphate as inhibitors.

G Boileau 1, H S Tenenhouse 1, L Desgroseillers 1, P Crine 1
PMCID: PMC1221786  PMID: 11311133

Abstract

Mutations in the PHEX gene (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) are responsible for X-linked hypophosphataemia, and studies in the Hyp mouse model of the human disease implicate the gene product in the regulation of renal phosphate (P(i)) reabsorption and bone mineralization. Although the mechanism for PHEX action is unknown, structural homologies with members of the M13 family of endopeptidases suggest a function for PHEX protein in the activation or degradation of peptide factors involved in the control of renal P(i) transport and matrix mineralization. To determine whether PHEX has endopeptidase activity, we generated a recombinant soluble, secreted form of human PHEX (secPHEX) and tested the activity of the purified protein with several peptide substrates, including a variety of bone-related peptides. We found that parathyroid-hormone-related peptide(107-139) is a substrate for secPHEX and that the enzyme cleaves at three positions within the peptide, all located at the N-terminus of aspartate residues. Furthermore, we show that osteocalcin, PP(i) and P(i), all of which are abundant in bone, are inhibitors of secPHEX activity. Inhibition of secPHEX activity by osteocalcin was abolished in the presence of Ca(2+). We suggest that PHEX activity and mineralization may be controlled in vivo by PP(i)/P(i) and Ca(2+) and, in the latter case, the regulation requires the participation of osteocalcin.

Full Text

The Full Text of this article is available as a PDF (189.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C. G., Tenenhouse H. S. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997 Mar 15;99(6):1200–1209. doi: 10.1172/JCI119276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornish J., Callon K. E., Lin C., Xiao C., Moseley J. M., Reid I. R. Stimulation of osteoblast proliferation by C-terminal fragments of parathyroid hormone-related protein. J Bone Miner Res. 1999 Jun;14(6):915–922. doi: 10.1359/jbmr.1999.14.6.915. [DOI] [PubMed] [Google Scholar]
  4. Delvin E. E., Richard P., Desbarats M., Ecarot-Charrier B., Glorieux F. H. Cultured osteoblasts from normal and hypophosphatemic mice: calcitriol receptors and biological response to the hormone. Bone. 1990;11(2):87–94. doi: 10.1016/8756-3282(90)90055-4. [DOI] [PubMed] [Google Scholar]
  5. Devault A., Nault C., Zollinger M., Fournie-Zaluski M. C., Roques B. P., Crine P., Boileau G. Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. Characterization of the recombinant enzyme and evidence for a glutamic acid residue at the active site. J Biol Chem. 1988 Mar 15;263(8):4033–4040. [PubMed] [Google Scholar]
  6. Dion N., Le Moual H., Fournié-Zaluski M. C., Roques B. P., Crine P., Boileau G. Evidence that Asn542 of neprilysin (EC 3.4.24.11) is involved in binding of the P2' residue of substrates and inhibitors. Biochem J. 1995 Oct 15;311(Pt 2):623–627. doi: 10.1042/bj3110623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Du L., Desbarats M., Viel J., Glorieux F. H., Cawthorn C., Ecarot B. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996 Aug 15;36(1):22–28. doi: 10.1006/geno.1996.0421. [DOI] [PubMed] [Google Scholar]
  8. Ducy P., Desbois C., Boyce B., Pinero G., Story B., Dunstan C., Smith E., Bonadio J., Goldstein S., Gundberg C. Increased bone formation in osteocalcin-deficient mice. Nature. 1996 Aug 1;382(6590):448–452. doi: 10.1038/382448a0. [DOI] [PubMed] [Google Scholar]
  9. Econs M. J., Drezner M. K. Tumor-induced osteomalacia--unveiling a new hormone. N Engl J Med. 1994 Jun 9;330(23):1679–1681. doi: 10.1056/NEJM199406093302310. [DOI] [PubMed] [Google Scholar]
  10. Fenton A. J., Kemp B. E., Kent G. N., Moseley J. M., Zheng M. H., Rowe D. J., Britto J. M., Martin T. J., Nicholson G. C. A carboxyl-terminal peptide from the parathyroid hormone-related protein inhibits bone resorption by osteoclasts. Endocrinology. 1991 Oct;129(4):1762–1768. doi: 10.1210/endo-129-4-1762. [DOI] [PubMed] [Google Scholar]
  11. Ghaddar G., Ruchon A. F., Carpentier M., Marcinkiewicz M., Seidah N. G., Crine P., Desgroseillers L., Boileau G. Molecular cloning and biochemical characterization of a new mouse testis soluble-zinc-metallopeptidase of the neprilysin family. Biochem J. 2000 Apr 15;347(Pt 2):419–429. doi: 10.1042/0264-6021:3470419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guo R., Quarles L. D. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res. 1997 Jul;12(7):1009–1017. doi: 10.1359/jbmr.1997.12.7.1009. [DOI] [PubMed] [Google Scholar]
  13. Ikeda K., Emoto N., Raharjo S. B., Nurhantari Y., Saiki K., Yokoyama M., Matsuo M. Molecular identification and characterization of novel membrane-bound metalloprotease, the soluble secreted form of which hydrolyzes a variety of vasoactive peptides. J Biol Chem. 1999 Nov 5;274(45):32469–32477. doi: 10.1074/jbc.274.45.32469. [DOI] [PubMed] [Google Scholar]
  14. Jockers R., Da Silva A., Strosberg A. D., Bouvier M., Marullo S. New molecular and structural determinants involved in beta 2-adrenergic receptor desensitization and sequestration. Delineation using chimeric beta 3/beta 2-adrenergic receptors. J Biol Chem. 1996 Apr 19;271(16):9355–9362. doi: 10.1074/jbc.271.16.9355. [DOI] [PubMed] [Google Scholar]
  15. Johnson G. D., Stevenson T., Ahn K. Hydrolysis of peptide hormones by endothelin-converting enzyme-1. A comparison with neprilysin. J Biol Chem. 1999 Feb 12;274(7):4053–4058. doi: 10.1074/jbc.274.7.4053. [DOI] [PubMed] [Google Scholar]
  16. Kaji H., Sugimoto T., Kanatani M., Fukase M., Chihara K. Carboxyl-terminal peptides from parathyroid hormone-related protein stimulate osteoclast-like cell formation. Endocrinology. 1995 Mar;136(3):842–848. doi: 10.1210/endo.136.3.7867592. [DOI] [PubMed] [Google Scholar]
  17. Kerr M. A., Kenny A. J. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):477–488. doi: 10.1042/bj1370477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kiryu-Seo S., Sasaki M., Yokohama H., Nakagomi S., Hirayama T., Aoki S., Wada K., Kiyama H. Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4345–4350. doi: 10.1073/pnas.070509897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Korth P., Egidy G., Parnot C., LeMoullec J. M., Corvol P., Pinet F. Construction, expression and characterization of a soluble form of human endothelin-converting-enzyme-1. FEBS Lett. 1997 Nov 17;417(3):365–370. doi: 10.1016/s0014-5793(97)01323-9. [DOI] [PubMed] [Google Scholar]
  20. Kumar R. Phosphatonin--a new phosphaturetic hormone? (lessons from tumour-induced osteomalacia and X-linked hypophosphataemia) Nephrol Dial Transplant. 1997 Jan;12(1):11–13. doi: 10.1093/ndt/12.1.11. [DOI] [PubMed] [Google Scholar]
  21. Lajeunesse D., Meyer R. A., Jr, Hamel L. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse. Kidney Int. 1996 Nov;50(5):1531–1538. doi: 10.1038/ki.1996.468. [DOI] [PubMed] [Google Scholar]
  22. Lanctôt C., Fournier H., Howell S., Boileau G., Crine P. Direct targeting of neutral endopeptidase (EC 3.4.24.11) to the apical cell surface of transfected LLC-PK1 cells and unpolarized secretion of its soluble form. Biochem J. 1995 Jan 1;305(Pt 1):165–171. doi: 10.1042/bj3050165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lazure C., Gauthier D., Jean F., Boudreault A., Seidah N. G., Bennett H. P., Hendy G. N. In vitro cleavage of internally quenched fluorogenic human proparathyroid hormone and proparathyroid-related peptide substrates by furin. Generation of a potent inhibitor. J Biol Chem. 1998 Apr 10;273(15):8572–8580. doi: 10.1074/jbc.273.15.8572. [DOI] [PubMed] [Google Scholar]
  24. Le Moual H., Dion N., Roques B. P., Crine P., Boileau G. Asp650 is crucial for catalytic activity of neutral endopeptidase 24-11. Eur J Biochem. 1994 Apr 1;221(1):475–480. doi: 10.1111/j.1432-1033.1994.tb18760.x. [DOI] [PubMed] [Google Scholar]
  25. Lemay G., Waksman G., Roques B. P., Crine P., Boileau G. Fusion of a cleavable signal peptide to the ectodomain of neutral endopeptidase (EC 3.4.24.11) results in the secretion of an active enzyme in COS-1 cells. J Biol Chem. 1989 Sep 15;264(26):15620–15623. [PubMed] [Google Scholar]
  26. Lemire I., Lazure C., Crine P., Boileau G. Secretion of a type II integral membrane protein induced by mutation of the transmembrane segment. Biochem J. 1997 Feb 15;322(Pt 1):335–342. doi: 10.1042/bj3220335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lipman M. L., Panda D., Bennett H. P., Henderson J. E., Shane E., Shen Y., Goltzman D., Karaplis A. C. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J Biol Chem. 1998 May 29;273(22):13729–13737. doi: 10.1074/jbc.273.22.13729. [DOI] [PubMed] [Google Scholar]
  28. Marie P. J., Travers R., Glorieux F. H. Healing of rickets with phosphate supplementation in the hypophosphatemic male mouse. J Clin Invest. 1981 Mar;67(3):911–914. doi: 10.1172/JCI110110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marsh W. L. Molecular biology of blood groups: cloning the Kell gene. Transfusion. 1992 Feb;32(2):98–101. doi: 10.1046/j.1537-2995.1992.32292180158.x. [DOI] [PubMed] [Google Scholar]
  30. Martínez M. E., García-Ocaña A., Sánchez M., Medina S., del Campo T., Valin A., Sanchez-Cabezudo M. J., Esbrit P. C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells. J Bone Miner Res. 1997 May;12(5):778–785. doi: 10.1359/jbmr.1997.12.5.778. [DOI] [PubMed] [Google Scholar]
  31. Moss D. W., Eaton R. H., Smith J. K., Whitby L. G. Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J. 1967 Jan;102(1):53–57. doi: 10.1042/bj1020053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nesbitt T., Fujiwara I., Thomas R., Xiao Z. S., Quarles L. D., Drezner M. K. Coordinated maturational regulation of PHEX and renal phosphate transport inhibitory activity: evidence for the pathophysiological role of PHEX in X-linked hypophosphatemia. J Bone Miner Res. 1999 Dec;14(12):2027–2035. doi: 10.1359/jbmr.1999.14.12.2027. [DOI] [PubMed] [Google Scholar]
  33. Oefner C., D'Arcy A., Hennig M., Winkler F. K., Dale G. E. Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol. 2000 Feb 18;296(2):341–349. doi: 10.1006/jmbi.1999.3492. [DOI] [PubMed] [Google Scholar]
  34. Philbrick W. M., Wysolmerski J. J., Galbraith S., Holt E., Orloff J. J., Yang K. H., Vasavada R. C., Weir E. C., Broadus A. E., Stewart A. F. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev. 1996 Jan;76(1):127–173. doi: 10.1152/physrev.1996.76.1.127. [DOI] [PubMed] [Google Scholar]
  35. Romberg R. W., Werness P. G., Riggs B. L., Mann K. G. Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry. 1986 Mar 11;25(5):1176–1180. doi: 10.1021/bi00353a035. [DOI] [PubMed] [Google Scholar]
  36. Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
  37. Rowe P. S. Molecular biology of hypophosphataemic rickets and oncogenic osteomalacia. Hum Genet. 1994 Nov;94(5):457–467. doi: 10.1007/BF00211008. [DOI] [PubMed] [Google Scholar]
  38. Ruchon A. F., Tenenhouse H. S., Marcinkiewicz M., Siegfried G., Aubin J. E., DesGroseillers L., Crine P., Boileau G. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000 Aug;15(8):1440–1450. doi: 10.1359/jbmr.2000.15.8.1440. [DOI] [PubMed] [Google Scholar]
  39. Sabbagh Y., Jones A. O., Tenenhouse H. S. PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia. Hum Mutat. 2000;16(1):1–6. doi: 10.1002/1098-1004(200007)16:1<1::AID-HUMU1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  40. Shimada K., Takahashi M., Turner A. J., Tanzawa K. Rat endothelin-converting enzyme-1 forms a dimer through Cys412 with a similar catalytic mechanism and a distinct substrate binding mechanism compared with neutral endopeptidase-24.11. Biochem J. 1996 May 1;315(Pt 3):863–867. doi: 10.1042/bj3150863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suda N., Gillespie M. T., Traianedes K., Zhou H., Ho P. W., Hards D. K., Allan E. H., Martin T. J., Moseley J. M. Expression of parathyroid hormone-related protein in cells of osteoblast lineage. J Cell Physiol. 1996 Jan;166(1):94–104. doi: 10.1002/(SICI)1097-4652(199601)166:1<94::AID-JCP11>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  42. Tenenhouse H. S. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant. 1999 Feb;14(2):333–341. doi: 10.1093/ndt/14.2.333. [DOI] [PubMed] [Google Scholar]
  43. Valdenaire O., Rohrbacher E., Langeveld A., Schweizer A., Meijers C. Organization and chromosomal localization of the human ECEL1 (XCE) gene encoding a zinc metallopeptidase involved in the nervous control of respiration. Biochem J. 2000 Mar 15;346(Pt 3):611–616. [PMC free article] [PubMed] [Google Scholar]
  44. Whyte M. P. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994 Aug;15(4):439–461. doi: 10.1210/edrv-15-4-439. [DOI] [PubMed] [Google Scholar]
  45. Wickner W. T., Lodish H. F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985 Oct 25;230(4724):400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
  46. Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., deWit D., Yanagisawa M. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell. 1994 Aug 12;78(3):473–485. doi: 10.1016/0092-8674(94)90425-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES