Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):733–739. doi: 10.1042/bj3550733

Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.

J L Elliott 1, K J Saliba 1, K Kirk 1
PMCID: PMC1221789  PMID: 11311136

Abstract

The mature, intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, is reliant on glycolysis for its energetic requirements. It produces large quantities of lactic acid, which have to be removed from the parasite's cytosol to maintain the cell's integrity and metabolic viability. Here we show that the monocarboxylates lactate and pyruvate are both transported across the parasite's plasma membrane via a H(+)/monocarboxylate symport process that is saturable and inhibited by the bioflavonoid phloretin. The results provide direct evidence for the presence at the parasite surface of a H(+)-coupled monocarboxylate transporter with features in common with members of the MCT (monocarboxylate transporter) family of higher eukaryotes.

Full Text

The Full Text of this article is available as a PDF (159.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansorge I., Benting J., Bhakdi S., Lingelbach K. Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J. 1996 Apr 1;315(Pt 1):307–314. doi: 10.1042/bj3150307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biggs B. A., Goozé L., Wycherley K., Wollish W., Southwell B., Leech J. H., Brown G. V. Antigenic variation in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9171–9174. doi: 10.1073/pnas.88.20.9171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer M. J., Hedley D. W. Measurement of intracellular pH. Methods Cell Biol. 1994;41:135–148. doi: 10.1016/s0091-679x(08)61714-8. [DOI] [PubMed] [Google Scholar]
  4. Bröer S., Bröer A., Schneider H. P., Stegen C., Halestrap A. P., Deitmer J. W. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J. 1999 Aug 1;341(Pt 3):529–535. doi: 10.1042/0264-6021:3410529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bröer S., Schneider H. P., Bröer A., Rahman B., Hamprecht B., Deitmer J. W. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998 Jul 1;333(Pt 1):167–174. doi: 10.1042/bj3330167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter L., Halestrap A. P. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994 Dec 15;304(Pt 3):751–760. doi: 10.1042/bj3040751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cranmer S. L., Conant A. R., Gutteridge W. E., Halestrap A. P. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. J Biol Chem. 1995 Jun 23;270(25):15045–15052. doi: 10.1074/jbc.270.25.15045. [DOI] [PubMed] [Google Scholar]
  8. Cranmer S. L., Magowan C., Liang J., Coppel R. L., Cooke B. M. An alternative to serum for cultivation of Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1997 May-Jun;91(3):363–365. doi: 10.1016/s0035-9203(97)90110-3. [DOI] [PubMed] [Google Scholar]
  9. Desai S. A., Bezrukov S. M., Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature. 2000 Aug 31;406(6799):1001–1005. doi: 10.1038/35023000. [DOI] [PubMed] [Google Scholar]
  10. Desai S. A., Krogstad D. J., McCleskey E. W. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 1993 Apr 15;362(6421):643–646. doi: 10.1038/362643a0. [DOI] [PubMed] [Google Scholar]
  11. Deuticke B., Rickert I., Beyer E. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta. 1978 Feb 2;507(1):137–155. doi: 10.1016/0005-2736(78)90381-4. [DOI] [PubMed] [Google Scholar]
  12. Dimmer K. S., Friedrich B., Lang F., Deitmer J. W., Bröer S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J. 2000 Aug 15;350(Pt 1):219–227. [PMC free article] [PubMed] [Google Scholar]
  13. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  14. Halestrap A. P., Price N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999 Oct 15;343(Pt 2):281–299. [PMC free article] [PubMed] [Google Scholar]
  15. Hayashi M., Yamada H., Mitamura T., Horii T., Yamamoto A., Moriyama Y. Vacuolar H(+)-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem. 2000 Nov 3;275(44):34353–34358. doi: 10.1074/jbc.M003323200. [DOI] [PubMed] [Google Scholar]
  16. Jackson V. N., Halestrap A. P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 1996 Jan 12;271(2):861–868. doi: 10.1074/jbc.271.2.861. [DOI] [PubMed] [Google Scholar]
  17. Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. 1997 Apr;77(2):321–358. doi: 10.1152/physrev.1997.77.2.321. [DOI] [PubMed] [Google Scholar]
  18. Kanaani J., Ginsburg H. Transport of lactate in Plasmodium falciparum-infected human erythrocytes. J Cell Physiol. 1991 Dec;149(3):469–476. doi: 10.1002/jcp.1041490316. [DOI] [PubMed] [Google Scholar]
  19. Kirk K., Horner H. A., Elford B. C., Ellory J. C., Newbold C. I. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem. 1994 Feb 4;269(5):3339–3347. [PubMed] [Google Scholar]
  20. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  21. Lin R. Y., Vera J. C., Chaganti R. S., Golde D. W. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem. 1998 Oct 30;273(44):28959–28965. doi: 10.1074/jbc.273.44.28959. [DOI] [PubMed] [Google Scholar]
  22. Manning Fox J. E., Meredith D., Halestrap A. P. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol. 2000 Dec 1;529(Pt 2):285–293. doi: 10.1111/j.1469-7793.2000.00285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pfaller M. A., Krogstad D. J., Parquette A. R., Nguyen-Dinh P. Plasmodium falciparum: stage-specific lactate production in synchronized cultures. Exp Parasitol. 1982 Dec;54(3):391–396. doi: 10.1016/0014-4894(82)90048-0. [DOI] [PubMed] [Google Scholar]
  24. Poole R. C., Cranmer S. L., Halestrap A. P., Levi A. J. Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990 Aug 1;269(3):827–829. doi: 10.1042/bj2690827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  26. Roth E. F., Jr, Raventos-Suarez C., Perkins M., Nagel R. L. Glutathione stability and oxidative stress in P. falciparum infection in vitro: responses of normal and G6PD deficient cells. Biochem Biophys Res Commun. 1982 Nov 30;109(2):355–362. doi: 10.1016/0006-291x(82)91728-4. [DOI] [PubMed] [Google Scholar]
  27. Saliba K. J., Horner H. A., Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem. 1998 Apr 24;273(17):10190–10195. doi: 10.1074/jbc.273.17.10190. [DOI] [PubMed] [Google Scholar]
  28. Saliba K. J., Kirk K. pH regulation in the intracellular malaria parasite, Plasmodium falciparum. H(+) extrusion via a V-type H(+)-ATPase. J Biol Chem. 1999 Nov 19;274(47):33213–33219. doi: 10.1074/jbc.274.47.33213. [DOI] [PubMed] [Google Scholar]
  29. Scheibel L. W., Adler A., Trager W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5303–5307. doi: 10.1073/pnas.76.10.5303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Slomianny C., Prensier G. Application of the serial sectioning and tridimensional reconstruction techniques to the morphological study of the Plasmodium falciparum mitochondrion. J Parasitol. 1986 Aug;72(4):595–598. [PubMed] [Google Scholar]
  31. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  32. Vander Jagt D. L., Hunsaker L. A., Campos N. M., Baack B. R. D-lactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):277–284. doi: 10.1016/0166-6851(90)90171-h. [DOI] [PubMed] [Google Scholar]
  33. Wang X., Levi A. J., Halestrap A. P. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Am J Physiol. 1994 Nov;267(5 Pt 2):H1759–H1769. doi: 10.1152/ajpheart.1994.267.5.H1759. [DOI] [PubMed] [Google Scholar]
  34. Wang X., Levi A. J., Halestrap A. P. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells. Am J Physiol. 1996 Feb;270(2 Pt 2):H476–H484. doi: 10.1152/ajpheart.1996.270.2.H476. [DOI] [PubMed] [Google Scholar]
  35. Wiemer E. A., Michels P. A., Opperdoes F. R. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. Biochem J. 1995 Dec 1;312(Pt 2):479–484. doi: 10.1042/bj3120479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilson M. C., Jackson V. N., Heddle C., Price N. T., Pilegaard H., Juel C., Bonen A., Montgomery I., Hutter O. F., Halestrap A. P. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem. 1998 Jun 26;273(26):15920–15926. doi: 10.1074/jbc.273.26.15920. [DOI] [PubMed] [Google Scholar]
  37. la Cour M., Lin H., Kenyon E., Miller S. S. Lactate transport in freshly isolated human fetal retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):434–442. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES