Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):741–750. doi: 10.1042/bj3550741

Agonist-promoted trafficking of human bradykinin receptors: arrestin- and dynamin-independent sequestration of the B2 receptor and bradykinin in HEK293 cells.

M E Lamb 1, W F De Weerd 1, L M Leeb-Lundberg 1
PMCID: PMC1221790  PMID: 11311137

Abstract

In this study, we analysed the agonist-promoted trafficking of human B(2) (B(2)R) and B(1) (B(1)R) bradykinin (BK) receptors using wild-type and green fluorescent protein (GFP)-tagged receptors in HEK293 cells. B(2)R was sequestered to a major extent upon exposure to BK, as determined by the loss of cell-surface B(2)R using radioligand binding and by imaging of B(2)R-GFP using laser-scanning confocal fluorescence microscopy. Concurrent BK sequestration was revealed by the appearance of acid-resistant specific BK receptor binding. The same techniques showed that B(1)R was sequestered to a considerably lesser extent upon binding of des-Arg(10)-kallidin. B(2)R sequestration was rapid (half-life approximately 5 min) and reached a steady-state level that was significantly lower than that of BK sequestration. B(2)R sequestration was minimally inhibited by K44A dynamin (22.4+/-3.7%), and was insensitive to arrestin-(319-418), which are dominant-negative mutants of dynamin I and beta-arrestin respectively. Furthermore, the B(2)R-mediated sequestration of BK was completely insensitive to both mutants, as was the association of BK with a caveolae-enriched fraction of the cells. On the other hand, agonist-promoted sequestration of the beta(2)-adrenergic receptor was dramatically inhibited by K44A dynamin (81.2+/-16.3%) and by arrestin-(319-418) (36.9+/-4.4%). Our results show that B(2)R is sequestered to a significantly greater extent than is B(1)R upon agonist treatment in HEK293 cells. Furthermore, B(2)R appears to be recycled in the process of sequestering BK, and this process occurs in a dynamin- and beta-arrestin-independent manner and, at least in part, involves caveolae.

Full Text

The Full Text of this article is available as a PDF (210.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  2. Ascoli M. Internalization and degradation of receptor-bound human choriogonadotropin in Leydig tumor cells. Fate of the hormone subunits. J Biol Chem. 1982 Nov 25;257(22):13306–13311. [PubMed] [Google Scholar]
  3. Austin C. E., Faussner A., Robinson H. E., Chakravarty S., Kyle D. J., Bathon J. M., Proud D. Stable expression of the human kinin B1 receptor in Chinese hamster ovary cells. Characterization of ligand binding and effector pathways. J Biol Chem. 1997 Apr 25;272(17):11420–11425. doi: 10.1074/jbc.272.17.11420. [DOI] [PubMed] [Google Scholar]
  4. Bascands J. L., Pecher C., Rouaud S., Emond C., Tack J. L., Bastie M. J., Burch R., Regoli D., Girolami J. P. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol. 1993 Mar;264(3 Pt 2):F548–F556. doi: 10.1152/ajprenal.1993.264.3.F548. [DOI] [PubMed] [Google Scholar]
  5. Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
  6. Bünemann M., Hosey M. M. G-protein coupled receptor kinases as modulators of G-protein signalling. J Physiol. 1999 May 15;517(Pt 1):5–23. doi: 10.1111/j.1469-7793.1999.0005z.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chun M., Liyanage U. K., Lisanti M. P., Lodish H. F. Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11728–11732. doi: 10.1073/pnas.91.24.11728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Damke H., Baba T., Warnock D. E., Schmid S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol. 1994 Nov;127(4):915–934. doi: 10.1083/jcb.127.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feron O., Smith T. W., Michel T., Kelly R. A. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem. 1997 Jul 11;272(28):17744–17748. doi: 10.1074/jbc.272.28.17744. [DOI] [PubMed] [Google Scholar]
  10. Gagnon A. W., Kallal L., Benovic J. L. Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-adrenergic receptor. J Biol Chem. 1998 Mar 20;273(12):6976–6981. doi: 10.1074/jbc.273.12.6976. [DOI] [PubMed] [Google Scholar]
  11. Haasemann M., Cartaud J., Muller-Esterl W., Dunia I. Agonist-induced redistribution of bradykinin B2 receptor in caveolae. J Cell Sci. 1998 Apr;111(Pt 7):917–928. doi: 10.1242/jcs.111.7.917. [DOI] [PubMed] [Google Scholar]
  12. Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
  13. Henley J. R., Krueger E. W., Oswald B. J., McNiven M. A. Dynamin-mediated internalization of caveolae. J Cell Biol. 1998 Apr 6;141(1):85–99. doi: 10.1083/jcb.141.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hess J. F., Borkowski J. A., Young G. S., Strader C. D., Ransom R. W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992 Apr 15;184(1):260–268. doi: 10.1016/0006-291x(92)91187-u. [DOI] [PubMed] [Google Scholar]
  15. Kallal L., Gagnon A. W., Penn R. B., Benovic J. L. Visualization of agonist-induced sequestration and down-regulation of a green fluorescent protein-tagged beta2-adrenergic receptor. J Biol Chem. 1998 Jan 2;273(1):322–328. doi: 10.1074/jbc.273.1.322. [DOI] [PubMed] [Google Scholar]
  16. Krupnick J. G., Benovic J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319. doi: 10.1146/annurev.pharmtox.38.1.289. [DOI] [PubMed] [Google Scholar]
  17. Lee K. B., Pals-Rylaarsdam R., Benovic J. L., Hosey M. M. Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem. 1998 May 22;273(21):12967–12972. doi: 10.1074/jbc.273.21.12967. [DOI] [PubMed] [Google Scholar]
  18. Leeb T., Mathis S. A., Leeb-Lundberg L. M. The sixth transmembrane domains of the human B1 and B2 bradykinin receptors are structurally compatible and involved in discriminating between subtype-selective agonists. J Biol Chem. 1997 Jan 3;272(1):311–317. doi: 10.1074/jbc.272.1.311. [DOI] [PubMed] [Google Scholar]
  19. Li S., Okamoto T., Chun M., Sargiacomo M., Casanova J. E., Hansen S. H., Nishimoto I., Lisanti M. P. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995 Jun 30;270(26):15693–15701. doi: 10.1074/jbc.270.26.15693. [DOI] [PubMed] [Google Scholar]
  20. Liu P., Ying Y., Ko Y. G., Anderson R. G. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem. 1996 Apr 26;271(17):10299–10303. doi: 10.1074/jbc.271.17.10299. [DOI] [PubMed] [Google Scholar]
  21. Mathis S. A., Criscimagna N. L., Leeb-Lundberg L. M. B1 and B2 kinin receptors mediate distinct patterns of intracellular Ca2+ signaling in single cultured vascular smooth muscle cells. Mol Pharmacol. 1996 Jul;50(1):128–139. [PubMed] [Google Scholar]
  22. Menke J. G., Borkowski J. A., Bierilo K. K., MacNeil T., Derrick A. W., Schneck K. A., Ransom R. W., Strader C. D., Linemeyer D. L., Hess J. F. Expression cloning of a human B1 bradykinin receptor. J Biol Chem. 1994 Aug 26;269(34):21583–21586. [PubMed] [Google Scholar]
  23. Munoz C. M., Cotecchia S., Leeb-Lundberg L. M. B2 kinin receptor-mediated internalization of bradykinin in DDT1 MF-2 smooth muscle cells is paralleled by sequestration of the occupied receptors. Arch Biochem Biophys. 1993 Mar;301(2):336–344. doi: 10.1006/abbi.1993.1153. [DOI] [PubMed] [Google Scholar]
  24. Munoz C. M., Leeb-Lundberg L. M. Receptor-mediated internalization of bradykinin. DDT1 MF-2 smooth muscle cells process internalized bradykinin via multiple degradative pathways. J Biol Chem. 1992 Jan 5;267(1):303–309. [PubMed] [Google Scholar]
  25. Oh P., McIntosh D. P., Schnitzer J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998 Apr 6;141(1):101–114. doi: 10.1083/jcb.141.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orsini M. J., Benovic J. L. Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms. J Biol Chem. 1998 Dec 18;273(51):34616–34622. doi: 10.1074/jbc.273.51.34616. [DOI] [PubMed] [Google Scholar]
  27. Pals-Rylaarsdam R., Gurevich V. V., Lee K. B., Ptasienski J. A., Benovic J. L., Hosey M. M. Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem. 1997 Sep 19;272(38):23682–23689. doi: 10.1074/jbc.272.38.23682. [DOI] [PubMed] [Google Scholar]
  28. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  29. Pizard A., Blaukat A., Müller-Esterl W., Alhenc-Gelas F., Rajerison R. M. Bradykinin-induced internalization of the human B2 receptor requires phosphorylation of three serine and two threonine residues at its carboxyl tail. J Biol Chem. 1999 Apr 30;274(18):12738–12747. doi: 10.1074/jbc.274.18.12738. [DOI] [PubMed] [Google Scholar]
  30. Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
  31. Raposo G., Dunia I., Delavier-Klutchko C., Kaveri S., Strosberg A. D., Benedetti E. L. Internalization of beta-adrenergic receptor in A431 cells involves non-coated vesicles. Eur J Cell Biol. 1989 Dec;50(2):340–352. [PubMed] [Google Scholar]
  32. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  33. Roettger B. F., Rentsch R. U., Pinon D., Holicky E., Hadac E., Larkin J. M., Miller L. J. Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol. 1995 Mar;128(6):1029–1041. doi: 10.1083/jcb.128.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schlador M. L., Nathanson N. M. Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and beta-arrestin-1. J Biol Chem. 1997 Jul 25;272(30):18882–18890. doi: 10.1074/jbc.272.30.18882. [DOI] [PubMed] [Google Scholar]
  35. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  36. Smart E. J., Ying Y. S., Mineo C., Anderson R. G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10104–10108. doi: 10.1073/pnas.92.22.10104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tropea M. M., Munoz C. M., Leeb-Lundberg L. M. Bradykinin binding to B2 kinin receptors and stimulation of phosphoinositide turnover and arachidonic acid release in primary cultures of cells from late pregnant rat myometrium. Can J Physiol Pharmacol. 1992 Oct;70(10):1360–1371. doi: 10.1139/y92-191. [DOI] [PubMed] [Google Scholar]
  38. Vögler O., Bogatkewitsch G. S., Wriske C., Krummenerl P., Jakobs K. H., van Koppen C. J. Receptor subtype-specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J Biol Chem. 1998 May 15;273(20):12155–12160. doi: 10.1074/jbc.273.20.12155. [DOI] [PubMed] [Google Scholar]
  39. Walker J. K., Premont R. T., Barak L. S., Caron M. G., Shetzline M. A. Properties of secretin receptor internalization differ from those of the beta(2)-adrenergic receptor. J Biol Chem. 1999 Oct 29;274(44):31515–31523. doi: 10.1074/jbc.274.44.31515. [DOI] [PubMed] [Google Scholar]
  40. Wu C., Butz S., Ying Y., Anderson R. G. Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem. 1997 Feb 7;272(6):3554–3559. doi: 10.1074/jbc.272.6.3554. [DOI] [PubMed] [Google Scholar]
  41. Zhang J., Ferguson S. S., Barak L. S., Ménard L., Caron M. G. Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem. 1996 Aug 2;271(31):18302–18305. doi: 10.1074/jbc.271.31.18302. [DOI] [PubMed] [Google Scholar]
  42. de Weerd W. F., Leeb-Lundberg L. M. Bradykinin sequesters B2 bradykinin receptors and the receptor-coupled Galpha subunits Galphaq and Galphai in caveolae in DDT1 MF-2 smooth muscle cells. J Biol Chem. 1997 Jul 11;272(28):17858–17866. doi: 10.1074/jbc.272.28.17858. [DOI] [PubMed] [Google Scholar]
  43. von Zastrow M., Kobilka B. K. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem. 1992 Feb 15;267(5):3530–3538. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES