Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):757–763. doi: 10.1042/bj3550757

Oxidative stress impairs insulin but not platelet-derived growth factor signalling in 3T3-L1 adipocytes.

A Tirosh 1, A Rudich 1, R Potashnik 1, N Bashan 1
PMCID: PMC1221792  PMID: 11311139

Abstract

Activation of phosphatidylinositol 3-kinase (PI 3-kinase) is a common event in both insulin and platelet-derived growth factor (PDGF) signalling, but only insulin activates this enzyme in the high-speed pellet (HSP), and induces GLUT4 translocation. Recently, we have demonstrated that exposure of 3T3-L1 adipocytes to oxidative stress impairs insulin-stimulated GLUT4 translocation and glucose transport, associated with impaired PI 3-kinase translocation and activation in the HSP [Tirosh, Potashnik, Bashan and Rudich (1999) J. Biol. Chem. 274, 10595-10602]. In this study the effect of a 2 h exposure to approximately 30 microM H(2)O(2) on insulin versus PDGF-BB signalling and metabolic effects was compared. PDGF-stimulated p85-associated PI 3-kinase activity in total cell lysates, as well as co-precipitation of the PDGF receptor, were unaffected by oxidative stress. Additionally, the increase in p85 association with the plasma-membrane lawns by PDGF remained intact following oxidation, whereas the insulin effect was decreased. PDGF significantly increased protein kinase B (PKB) activity in early differentiated cells, and that of p70 S6-kinase in both early and fully differentiated 3T3-L1 adipocytes. Following oxidation the effect of PDGF on PKB and p70 S6-kinase activation remained intact, whereas significant inhibition of insulin-stimulated activation of those enzymes was observed. In accordance, in both early and fully differentiated cells, oxidative stress completely blunted insulin- but not PDGF-stimulated protein synthesis. In conclusion, oxidative stress impairs insulin, but not PDGF, signalling and metabolic actions in both early and fully differentiated 3T3-L1 adipocytes. This emphasizes compartment-specific activation of PI 3-kinase as an oxidation-sensitive step specifically leading to insulin resistance.

Full Text

The Full Text of this article is available as a PDF (253.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
  2. Blair A. S., Hajduch E., Litherland G. J., Hundal H. S. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways. J Biol Chem. 1999 Dec 17;274(51):36293–36299. doi: 10.1074/jbc.274.51.36293. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brown R. A., Domin J., Arcaro A., Waterfield M. D., Shepherd P. R. Insulin activates the alpha isoform of class II phosphoinositide 3-kinase. J Biol Chem. 1999 May 21;274(21):14529–14532. doi: 10.1074/jbc.274.21.14529. [DOI] [PubMed] [Google Scholar]
  5. Caballero B. Vitamin E improves the action of insulin. Nutr Rev. 1993 Nov;51(11):339–340. doi: 10.1111/j.1753-4887.1993.tb03761.x. [DOI] [PubMed] [Google Scholar]
  6. Chen D., Elmendorf J. S., Olson A. L., Li X., Earp H. S., Pessin J. E. Osmotic shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathway. J Biol Chem. 1997 Oct 24;272(43):27401–27410. doi: 10.1074/jbc.272.43.27401. [DOI] [PubMed] [Google Scholar]
  7. Clark S. F., Martin S., Carozzi A. J., Hill M. M., James D. E. Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: potential involvement of a membrane skeleton. J Cell Biol. 1998 Mar 9;140(5):1211–1225. doi: 10.1083/jcb.140.5.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cross D. A., Alessi D. R., Cohen P., Andjelkovich M., Hemmings B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21;378(6559):785–789. doi: 10.1038/378785a0. [DOI] [PubMed] [Google Scholar]
  9. Franke T. F., Yang S. I., Chan T. O., Datta K., Kazlauskas A., Morrison D. K., Kaplan D. R., Tsichlis P. N. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995 Jun 2;81(5):727–736. doi: 10.1016/0092-8674(95)90534-0. [DOI] [PubMed] [Google Scholar]
  10. Frevert E. U., Kahn B. B. Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol. 1997 Jan;17(1):190–198. doi: 10.1128/mcb.17.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray A., Van Der Kaay J., Downes C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed] [Google Scholar]
  12. Hadari Y. R., Tzahar E., Nadiv O., Rothenberg P., Roberts C. T., Jr, LeRoith D., Yarden Y., Zick Y. Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3'-kinase upon its association with pp185 (IRS-1) in intact rat livers. J Biol Chem. 1992 Sep 5;267(25):17483–17486. [PubMed] [Google Scholar]
  13. Haffner S. M. Clinical relevance of the oxidative stress concept. Metabolism. 2000 Feb;49(2 Suppl 1):30–34. doi: 10.1016/s0026-0495(00)80083-9. [DOI] [PubMed] [Google Scholar]
  14. Halliwell B. Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans. 1996 Nov;24(4):1023–1027. doi: 10.1042/bst0241023. [DOI] [PubMed] [Google Scholar]
  15. Hansen L. L., Ikeda Y., Olsen G. S., Busch A. K., Mosthaf L. Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem. 1999 Aug 27;274(35):25078–25084. doi: 10.1074/jbc.274.35.25078. [DOI] [PubMed] [Google Scholar]
  16. Hooshmand-Rad R., Hájková L., Klint P., Karlsson R., Vanhaesebroeck B., Claesson-Welsh L., Heldin C. H. The PI 3-kinase isoforms p110(alpha) and p110(beta) have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci. 2000 Jan;113(Pt 2):207–214. doi: 10.1242/jcs.113.2.207. [DOI] [PubMed] [Google Scholar]
  17. Isakoff S. J., Taha C., Rose E., Marcusohn J., Klip A., Skolnik E. Y. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10247–10251. doi: 10.1073/pnas.92.22.10247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitamura T., Ogawa W., Sakaue H., Hino Y., Kuroda S., Takata M., Matsumoto M., Maeda T., Konishi H., Kikkawa U. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol. 1998 Jul;18(7):3708–3717. doi: 10.1128/mcb.18.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Navé B. T., Haigh R. J., Hayward A. C., Siddle K., Shepherd P. R. Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3-L1 adipocytes. Biochem J. 1996 Aug 15;318(Pt 1):55–60. doi: 10.1042/bj3180055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oatey P. B., Venkateswarlu K., Williams A. G., Fletcher L. M., Foulstone E. J., Cullen P. J., Tavaré J. M. Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochem J. 1999 Dec 1;344(Pt 2):511–518. [PMC free article] [PubMed] [Google Scholar]
  21. Ricort J. M., Tanti J. F., Van Obberghen E., Le Marchand-Brustel Y. Different effects of insulin and platelet-derived growth factor on phosphatidylinositol 3-kinase at the subcellular level in 3T3-L1 adipocytes. A possible explanation for their specific effects on glucose transport. Eur J Biochem. 1996 Jul 1;239(1):17–22. doi: 10.1111/j.1432-1033.1996.0017u.x. [DOI] [PubMed] [Google Scholar]
  22. Rondinone C. M., Carvalho E., Rahn T., Manganiello V. C., Degerman E., Smith U. P. Phosphorylation of PDE3B by phosphatidylinositol 3-kinase associated with the insulin receptor. J Biol Chem. 2000 Apr 7;275(14):10093–10098. doi: 10.1074/jbc.275.14.10093. [DOI] [PubMed] [Google Scholar]
  23. Rudich A., Kozlovsky N., Potashnik R., Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol. 1997 May;272(5 Pt 1):E935–E940. doi: 10.1152/ajpendo.1997.272.5.E935. [DOI] [PubMed] [Google Scholar]
  24. Rudich A., Tirosh A., Potashnik R., Hemi R., Kanety H., Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998 Oct;47(10):1562–1569. doi: 10.2337/diabetes.47.10.1562. [DOI] [PubMed] [Google Scholar]
  25. Rudich A., Tirosh A., Potashnik R., Khamaisi M., Bashan N. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia. 1999 Aug;42(8):949–957. doi: 10.1007/s001250051253. [DOI] [PubMed] [Google Scholar]
  26. Salonen J. T., Nyyssönen K., Tuomainen T. P., Mäenpä P. H., Korpela H., Kaplan G. A., Lynch J., Helmrich S. P., Salonen R. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow up study in men. BMJ. 1995 Oct 28;311(7013):1124–1127. doi: 10.1136/bmj.311.7013.1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998 Aug 1;333(Pt 3):471–490. doi: 10.1042/bj3330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stokoe D., Caudwell B., Cohen P. T., Cohen P. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J. 1993 Dec 15;296(Pt 3):843–849. doi: 10.1042/bj2960843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Su T. Z., Wang M., Syu L. J., Saltiel A. R., Oxender D. L. Regulation of system A amino acid transport in 3T3-L1 adipocytes by insulin. J Biol Chem. 1998 Feb 6;273(6):3173–3179. doi: 10.1074/jbc.273.6.3173. [DOI] [PubMed] [Google Scholar]
  30. Summers S. A., Whiteman E. L., Cho H., Lipfert L., Birnbaum M. J. Differentiation-dependent suppression of platelet-derived growth factor signaling in cultured adipocytes. J Biol Chem. 1999 Aug 20;274(34):23858–23867. doi: 10.1074/jbc.274.34.23858. [DOI] [PubMed] [Google Scholar]
  31. Tirosh A., Potashnik R., Bashan N., Rudich A. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem. 1999 Apr 9;274(15):10595–10602. doi: 10.1074/jbc.274.15.10595. [DOI] [PubMed] [Google Scholar]
  32. Tsakiridis T., Wang Q., Taha C., Grinstein S., Downey G., Klip A. Involvement of the actin network in insulin signalling. Soc Gen Physiol Ser. 1997;52:257–271. [PubMed] [Google Scholar]
  33. Ursø B., Brown R. A., O'Rahilly S., Shepherd P. R., Siddle K. The alpha-isoform of class II phosphoinositide 3-kinase is more effectively activated by insulin receptors than IGF receptors, and activation requires receptor NPEY motifs. FEBS Lett. 1999 Nov 5;460(3):423–426. doi: 10.1016/s0014-5793(99)01388-5. [DOI] [PubMed] [Google Scholar]
  34. Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
  35. Vanhaesebroeck B., Waterfield M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999 Nov 25;253(1):239–254. doi: 10.1006/excr.1999.4701. [DOI] [PubMed] [Google Scholar]
  36. Virkamäki A., Ueki K., Kahn C. R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 1999 Apr;103(7):931–943. doi: 10.1172/JCI6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang Q., Bilan P. J., Tsakiridis T., Hinek A., Klip A. Actin filaments participate in the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem J. 1998 May 1;331(Pt 3):917–928. doi: 10.1042/bj3310917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Warner H. R. Superoxide dismutase, aging, and degenerative disease. Free Radic Biol Med. 1994 Sep;17(3):249–258. doi: 10.1016/0891-5849(94)90080-9. [DOI] [PubMed] [Google Scholar]
  39. Yang C., Watson R. T., Elmendorf J. S., Sacks D. B., Pessin J. E. Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. Mol Endocrinol. 2000 Feb;14(2):317–326. doi: 10.1210/mend.14.2.0425. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES