Abstract
The oxidative burst constitutes one of the most rapid defence responses characterized in the Plant Kingdom. We have observed that four distinct elicitors of the soya bean oxidative burst activate kinases of masses approximately 44 kDa and approximately 47 kDa. Evidence that these kinases regulate production of reactive oxygen species include: (i) their rapid activation by oxidative burst elicitors, (ii) their tight temporal correlation between activation/deactivation of the kinases and activation/deactivation of the oxidative burst, (iii) the identical pharmacological profile of kinase activation and oxidant production for 13 commonly used inhibitors, and (iv) the autologous activation of both kinases and oxidant production by calyculin A and cantharidin, two phosphatase inhibitors. Immunological and biochemical studies reveal that the activated 44 kDa and 47 kDa kinases are mitogen-activated protein (MAP) kinase family members. The kinases prefer myelin basic protein as a substrate, and they phosphorylate primarily on threonine residues. The kinases are themselves phosphorylated on tyrosine residues, and this phosphorylation is required for activity. Finally, both kinases are recognized by an antibody against activated MAP kinase immediately after (but not before) cell stimulation by elicitors. Based on these and other observations, a preliminary sequence of signalling steps linking elicitor stimulation, kinase activation and Ca(2+) entry, to initiation of oxidant production, is proposed.
Full Text
The Full Text of this article is available as a PDF (215.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM. Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms . Plant Physiol. 1998 Apr;116(4):1379–1385. doi: 10.1104/pp.116.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque S., Binet M. N., Ponchet M., Pugin A., Lebrun-Garcia A. Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem. 1999 Dec 3;274(49):34699–34705. doi: 10.1074/jbc.274.49.34699. [DOI] [PubMed] [Google Scholar]
- Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
- Cazale AC, Droillard MJ, Wilson C, Heberle-Bors E, Barbier-Brygoo H, Lauriere C. MAP kinase activation by hypoosmotic stress of tobacco cell suspensions: towards the oxidative burst response? Plant J. 1999 Aug;19(3):297–307. doi: 10.1046/j.1365-313x.1999.00528.x. [DOI] [PubMed] [Google Scholar]
- Cessna S. G., Chandra S., Low P. S. Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J Biol Chem. 1998 Oct 16;273(42):27286–27291. doi: 10.1074/jbc.273.42.27286. [DOI] [PubMed] [Google Scholar]
- Chandra S., Heinstein P. F., Low P. S. Activation of Phospholipase A by Plant Defense Elicitors. Plant Physiol. 1996 Mar;110(3):979–986. doi: 10.1104/pp.110.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra S., Low P. S. Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4120–4123. doi: 10.1073/pnas.92.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra S., Low P. S. Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4120–4123. doi: 10.1073/pnas.92.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra S., Martin G. B., Low P. S. The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13393–13397. doi: 10.1073/pnas.93.23.13393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra S., Stennis M., Low P. S. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem. 1997 Nov 7;272(45):28274–28280. doi: 10.1074/jbc.272.45.28274. [DOI] [PubMed] [Google Scholar]
- Degousee N., Triantaphylides C., Montillet J. L. Involvement of Oxidative Processes in the Signaling Mechanisms Leading to the Activation of Glyceollin Synthesis in Soybean (Glycine max). Plant Physiol. 1994 Mar;104(3):945–952. doi: 10.1104/pp.104.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer S. C., Legendre L., Low P. S., Leto T. L. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta. 1996 Mar 15;1289(2):231–237. doi: 10.1016/0304-4165(95)00156-5. [DOI] [PubMed] [Google Scholar]
- Felix G., Grosskopf D. G., Regenass M., Boller T. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8831–8834. doi: 10.1073/pnas.88.19.8831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felix G., Regenass M., Spanu P., Boller T. The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P]phosphate. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):952–956. doi: 10.1073/pnas.91.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn M. A., Heinstein P. F., Low P. S. Characterization of parameters influencing receptor-mediated endocytosis in cultured soybean cells. Plant Physiol. 1992 Feb;98(2):673–679. doi: 10.1104/pp.98.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y., Li H., Gupta R., Morris P. C., Luan S., Kieber J. J. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 2000 Apr;122(4):1301–1310. doi: 10.1104/pp.122.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jabs T., Tschope M., Colling C., Hahlbrock K., Scheel D. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4800–4805. doi: 10.1073/pnas.94.9.4800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonak C., Ligterink W., Hirt H. MAP kinases in plant signal transduction. Cell Mol Life Sci. 1999 Feb;55(2):204–213. doi: 10.1007/s000180050285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kameshita I., Fujisawa H. A sensitive method for detection of calmodulin-dependent protein kinase II activity in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem. 1989 Nov 15;183(1):139–143. doi: 10.1016/0003-2697(89)90181-4. [DOI] [PubMed] [Google Scholar]
- Keller T., Damude H. G., Werner D., Doerner P., Dixon R. A., Lamb C. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell. 1998 Feb;10(2):255–266. doi: 10.1105/tpc.10.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebrun-Garcia A., Ouaked F., Chiltz A., Pugin A. Activation of MAPK homologues by elicitors in tobacco cells. Plant J. 1998 Sep;15(6):773–781. doi: 10.1046/j.1365-313x.1998.00269.x. [DOI] [PubMed] [Google Scholar]
- Legendre L., Heinstein P. F., Low P. S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem. 1992 Oct 5;267(28):20140–20147. [PubMed] [Google Scholar]
- Legendre L., Yueh Y. G., Crain R., Haddock N., Heinstein P. F., Low P. S. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993 Nov 25;268(33):24559–24563. [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Ligterink W., Kroj T., zur Nieden U., Hirt H., Scheel D. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science. 1997 Jun 27;276(5321):2054–2057. doi: 10.1126/science.276.5321.2054. [DOI] [PubMed] [Google Scholar]
- Low P. S., Heinstein P. F. Elicitor stimulation of the defense response in cultured plant cells monitored by fluorescent dyes. Arch Biochem Biophys. 1986 Sep;249(2):472–479. doi: 10.1016/0003-9861(86)90024-x. [DOI] [PubMed] [Google Scholar]
- Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nothnagel E. A., McNeil M., Albersheim P., Dell A. Host-Pathogen Interactions : XXII. A Galacturonic Acid Oligosaccharide from Plant Cell Walls Elicits Phytoalexins. Plant Physiol. 1983 Apr;71(4):916–926. doi: 10.1104/pp.71.4.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reymond P., Grünberger S., Paul K., Müller M., Farmer E. E. Oligogalacturonide defense signals in plants: large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4145–4149. doi: 10.1073/pnas.92.10.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H., Jones J. D. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell. 1999 Feb;11(2):273–287. doi: 10.1105/tpc.11.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
- Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995 Dec 22;270(5244):1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
- Seo S., Sano H., Ohashi Y. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell. 1999 Feb;11(2):289–298. doi: 10.1105/tpc.11.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sessa G., Raz V., Savaldi S., Fluhr R. PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell. 1996 Dec;8(12):2223–2234. doi: 10.1105/tpc.8.12.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
- Wu G., Shortt B. J., Lawrence E. B., Levine E. B., Fitzsimmons K. C., Shah D. M. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell. 1995 Sep;7(9):1357–1368. doi: 10.1105/tpc.7.9.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahraus T., Chandra S., Legendre L., Low P. S. Evidence for a Mechanically Induced Oxidative Burst. Plant Physiol. 1995 Dec;109(4):1259–1266. doi: 10.1104/pp.109.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Du H., Klessig D. F. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell. 1998 Mar;10(3):435–450. doi: 10.1105/tpc.10.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Klessig D. F. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell. 1997 May;9(5):809–824. doi: 10.1105/tpc.9.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]