Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):805–817. doi: 10.1042/bj3550805

Mammalian inositol polyphosphate 5-phosphatase II can compensate for the absence of all three yeast Sac1-like-domain-containing 5-phosphatases.

C J O'Malley 1, B K McColl 1, A M Kong 1, S L Ellis 1, A P Wijayaratnam 1, J Sambrook 1, C A Mitchell 1
PMCID: PMC1221798  PMID: 11311145

Abstract

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] plays a complex role in generating intracellular signalling molecules, and also in regulating actin-binding proteins, vesicular trafficking and vacuolar fusion. Four inositol polyphosphate 5-phosphatases (hereafter called 5-phosphatases) have been identified in Saccharomyces cerevisiae: Inp51p, Inp52p, Inp53p and Inp54p. Each enzyme contains a 5-phosphatase domain which hydrolyses PtdIns(4,5)P(2), forming PtdIns4P, while Inp52p and Inp53p also express a polyphosphoinositide phosphatase domain within the Sac1-like domain. Disruption of any two yeast 5-phosphatases containing a Sac1-like domain results in abnormalities in actin polymerization, plasma membrane, vacuolar morphology and bud-site selection. Triple null mutant 5-phosphatase strains are non-viable. To investigate the role of PtdIns(4,5)P(2) in mediating the phenotype of double and triple 5-phosphatase null mutant yeast, we determined whether a mammalian PtdIns(4,5)P(2) 5-phosphatase, 5-phosphatase II, which lacks polyphosphoinositide phosphatase activity, could correct the phenotype of triple 5-phosphatase null mutant yeast and restore cellular PtdIns(4,5)P(2) levels to near basal values. Mammalian 5-phosphatase II expressed under an inducible promoter corrected the growth, cell wall, vacuolar and actin polymerization defects of the triple 5-phosphatase null mutant yeast strains. Cellular PtdIns(4,5)P(2) levels in various 5-phosphatase double null mutant strains demonstrated significant accumulation (4.5-, 3- and 2-fold for Deltainp51Deltainp53, Deltainp51Deltainp52 and Deltainp52Deltainp53 double null mutants respectively), which was corrected significantly following 5-phosphatase II expression. Collectively, these studies demonstrate the functional and cellular consequences of PtdIns(4,5)P(2) accumulation and the evolutionary conservation of function between mammalian and yeast PtdIns(4,5)P(2) 5-phosphatases.

Full Text

The Full Text of this article is available as a PDF (410.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagnat M., Keränen S., Shevchenko A., Shevchenko A., Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254–3259. doi: 10.1073/pnas.060034697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensen E. S., Costaguta G., Payne G. S. Synthetic genetic interactions with temperature-sensitive clathrin in Saccharomyces cerevisiae. Roles for synaptojanin-like Inp53p and dynamin-related Vps1p in clathrin-dependent protein sorting at the trans-Golgi network. Genetics. 2000 Jan;154(1):83–97. doi: 10.1093/genetics/154.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  4. Bone N., Millar J. B., Toda T., Armstrong J. Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr Biol. 1998 Jan 29;8(3):135–144. doi: 10.1016/s0960-9822(98)00060-8. [DOI] [PubMed] [Google Scholar]
  5. Conradt B., Haas A., Wickner W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J Cell Biol. 1994 Jul;126(1):99–110. doi: 10.1083/jcb.126.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corvera S., Czech M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 1998 Nov;8(11):442–446. doi: 10.1016/s0962-8924(98)01366-x. [DOI] [PubMed] [Google Scholar]
  7. Cremona O., Di Paolo G., Wenk M. R., Lüthi A., Kim W. T., Takei K., Daniell L., Nemoto Y., Shears S. B., Flavell R. A. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell. 1999 Oct 15;99(2):179–188. doi: 10.1016/s0092-8674(00)81649-9. [DOI] [PubMed] [Google Scholar]
  8. Defilippi P., Olivo C., Venturino M., Dolce L., Silengo L., Tarone G. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc Res Tech. 1999 Oct 1;47(1):67–78. doi: 10.1002/(SICI)1097-0029(19991001)47:1<67::AID-JEMT7>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  9. Dlakić M. Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci. 2000 Jun;25(6):272–273. doi: 10.1016/s0968-0004(00)01582-6. [DOI] [PubMed] [Google Scholar]
  10. Dujon B., Albermann K., Aldea M., Alexandraki D., Ansorge W., Arino J., Benes V., Bohn C., Bolotin-Fukuhara M., Bordonné R. The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98–102. [PubMed] [Google Scholar]
  11. Guo S., Stolz L. E., Lemrow S. M., York J. D. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem. 1999 May 7;274(19):12990–12995. doi: 10.1074/jbc.274.19.12990. [DOI] [PubMed] [Google Scholar]
  12. Hartwig J. H., Bokoch G. M., Carpenter C. L., Janmey P. A., Taylor L. A., Toker A., Stossel T. P. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell. 1995 Aug 25;82(4):643–653. doi: 10.1016/0092-8674(95)90036-5. [DOI] [PubMed] [Google Scholar]
  13. Hawkins P. T., Jackson T. R., Stephens L. R. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature. 1992 Jul 9;358(6382):157–159. doi: 10.1038/358157a0. [DOI] [PubMed] [Google Scholar]
  14. Helgason C. D., Damen J. E., Rosten P., Grewal R., Sorensen P., Chappel S. M., Borowski A., Jirik F., Krystal G., Humphries R. K. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998 Jun 1;12(11):1610–1620. doi: 10.1101/gad.12.11.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huber M., Helgason C. D., Scheid M. P., Duronio V., Humphries R. K., Krystal G. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 1998 Dec 15;17(24):7311–7319. doi: 10.1093/emboj/17.24.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hughes W. E., Cooke F. T., Parker P. J. Sac phosphatase domain proteins. Biochem J. 2000 Sep 1;350(Pt 2):337–352. [PMC free article] [PubMed] [Google Scholar]
  17. Ishihara H., Shibasaki Y., Kizuki N., Katagiri H., Yazaki Y., Asano T., Oka Y. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1996 Sep 27;271(39):23611–23614. doi: 10.1074/jbc.271.39.23611. [DOI] [PubMed] [Google Scholar]
  18. Jänne P. A., Suchy S. F., Bernard D., MacDonald M., Crawley J., Grinberg A., Wynshaw-Boris A., Westphal H., Nussbaum R. L. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J Clin Invest. 1998 May 15;101(10):2042–2053. doi: 10.1172/JCI2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kübler E., Dohlman H. G., Lisanti M. P. Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. Lipid requirements for targeting of heterotrimeric G-protein subunits. J Biol Chem. 1996 Dec 20;271(51):32975–32980. doi: 10.1074/jbc.271.51.32975. [DOI] [PubMed] [Google Scholar]
  20. Liu Q., Oliveira-Dos-Santos A. J., Mariathasan S., Bouchard D., Jones J., Sarao R., Kozieradzki I., Ohashi P. S., Penninger J. M., Dumont D. J. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med. 1998 Oct 5;188(7):1333–1342. doi: 10.1084/jem.188.7.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Majerus P. W. Inositols do it all. Genes Dev. 1996 May 1;10(9):1051–1053. doi: 10.1101/gad.10.9.1051. [DOI] [PubMed] [Google Scholar]
  22. Matzaris M., O'Malley C. J., Badger A., Speed C. J., Bird P. I., Mitchell C. A. Distinct membrane and cytosolic forms of inositol polyphosphate 5-phosphatase II. Efficient membrane localization requires two discrete domains. J Biol Chem. 1998 Apr 3;273(14):8256–8267. doi: 10.1074/jbc.273.14.8256. [DOI] [PubMed] [Google Scholar]
  23. Mayer A., Scheglmann D., Dove S., Glatz A., Wickner W., Haas A. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol Biol Cell. 2000 Mar;11(3):807–817. doi: 10.1091/mbc.11.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McPherson P. S., Czernik A. J., Chilcote T. J., Onofri F., Benfenati F., Greengard P., Schlessinger J., De Camilli P. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6486–6490. doi: 10.1073/pnas.91.14.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell C. A., Brown S., Campbell J. K., Munday A. D., Speed C. J. Regulation of second messengers by the inositol polyphosphate 5-phosphatases. Biochem Soc Trans. 1996 Nov;24(4):994–1000. doi: 10.1042/bst0240994. [DOI] [PubMed] [Google Scholar]
  26. Mondorf U. F., Piiper A., Herrero M., Olbrich H. G., Bender M., Gross W., Scheuermann E., Geiger H. Lipoprotein(a) stimulates growth of human mesangial cells and induces activation of phospholipase C via pertussis toxin-sensitive G proteins. Kidney Int. 1999 Apr;55(4):1359–1366. doi: 10.1046/j.1523-1755.1999.00367.x. [DOI] [PubMed] [Google Scholar]
  27. Mumberg D., Müller R., Funk M. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994 Dec 25;22(25):5767–5768. doi: 10.1093/nar/22.25.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  29. Pike L. J., Miller J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 1998 Aug 28;273(35):22298–22304. doi: 10.1074/jbc.273.35.22298. [DOI] [PubMed] [Google Scholar]
  30. Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
  31. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997 Nov 13;390(6656):192–196. doi: 10.1038/36621. [DOI] [PubMed] [Google Scholar]
  32. Raucher D., Stauffer T., Chen W., Shen K., Guo S., York J. D., Sheetz M. P., Meyer T. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 2000 Jan 21;100(2):221–228. doi: 10.1016/s0092-8674(00)81560-3. [DOI] [PubMed] [Google Scholar]
  33. Ringstad N., Nemoto Y., De Camilli P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8569–8574. doi: 10.1073/pnas.94.16.8569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Röschinger W., Muntau A. C., Rudolph G., Roscher A. A., Kammerer S. Carrier assessment in families with lowe oculocerebrorenal syndrome: novel mutations in the OCRL1 gene and correlation of direct DNA diagnosis with ocular examination. Mol Genet Metab. 2000 Mar;69(3):213–222. doi: 10.1006/mgme.1999.2955. [DOI] [PubMed] [Google Scholar]
  35. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  36. Singer-Krüger B., Nemoto Y., Daniell L., Ferro-Novick S., De Camilli P. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci. 1998 Nov;111(Pt 22):3347–3356. doi: 10.1242/jcs.111.22.3347. [DOI] [PubMed] [Google Scholar]
  37. Speed C. J., Mitchell C. A. Sustained elevation in inositol 1,4,5-trisphosphate results in inhibition of phosphatidylinositol transfer protein activity and chronic depletion of the agonist-sensitive phosphoinositide pool. J Cell Sci. 2000 Jul;113(Pt 14):2631–2638. doi: 10.1242/jcs.113.14.2631. [DOI] [PubMed] [Google Scholar]
  38. Srinivasan S., Seaman M., Nemoto Y., Daniell L., Suchy S. F., Emr S., De Camilli P., Nussbaum R. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol. 1997 Dec;74(4):350–360. [PubMed] [Google Scholar]
  39. Stack J. H., Emr S. D. Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem. 1994 Dec 16;269(50):31552–31562. [PubMed] [Google Scholar]
  40. Stolz L. E., Huynh C. V., Thorner J., York J. D. Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1715–1729. doi: 10.1093/genetics/148.4.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stolz L. E., Kuo W. J., Longchamps J., Sekhon M. K., York J. D. INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem. 1998 May 8;273(19):11852–11861. doi: 10.1074/jbc.273.19.11852. [DOI] [PubMed] [Google Scholar]
  42. Stossel T. P., Hartwig J. H., Janmey P. A., Kwiatkowski D. J. Cell crawling two decades after Abercrombie. Biochem Soc Symp. 1999;65:267–280. [PubMed] [Google Scholar]
  43. Uno I., Fukami K., Kato H., Takenawa T., Ishikawa T. Essential role for phosphatidylinositol 4,5-bisphosphate in yeast cell proliferation. Nature. 1988 May 12;333(6169):188–190. doi: 10.1038/333188a0. [DOI] [PubMed] [Google Scholar]
  44. Whisstock J. C., Romero S., Gurung R., Nandurkar H., Ooms L. M., Bottomley S. P., Mitchell C. A. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J Biol Chem. 2000 Nov 24;275(47):37055–37061. doi: 10.1074/jbc.M006244200. [DOI] [PubMed] [Google Scholar]
  45. Wiemken A., Matile P., Moor H. Vacuolar dynamics in synchronously budding yeast. Arch Mikrobiol. 1970;70(2):89–103. doi: 10.1007/BF00412200. [DOI] [PubMed] [Google Scholar]
  46. Zhang X., Hartz P. A., Philip E., Racusen L. C., Majerus P. W. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998 Jan 16;273(3):1574–1582. doi: 10.1074/jbc.273.3.1574. [DOI] [PubMed] [Google Scholar]
  47. Zhang X., Majerus P. W. Phosphatidylinositol signalling reactions. Semin Cell Dev Biol. 1998 Apr;9(2):153–160. doi: 10.1006/scdb.1997.0220. [DOI] [PubMed] [Google Scholar]
  48. de Heuvel E., Bell A. W., Ramjaun A. R., Wong K., Sossin W. S., McPherson P. S. Identification of the major synaptojanin-binding proteins in brain. J Biol Chem. 1997 Mar 28;272(13):8710–8716. doi: 10.1074/jbc.272.13.8710. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES