Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):851–858. doi: 10.1042/bj3550851

Characterization of membrane-localized and cytosolic Rac-GTPase-activating proteins in human neutrophil granulocytes: contribution to the regulation of NADPH oxidase.

M Geiszt 1, M C Dagher 1, G Molnár 1, A Havasi 1, J Faure 1, M H Paclet 1, F Morel 1, E Ligeti 1
PMCID: PMC1221803  PMID: 11311150

Abstract

We have investigated the intracellular localization and molecular identity of Rac-GTPase-activating proteins (Rac-GAPs) in human neutrophils. Immunoblot analysis detected the presence of both p190RhoGAP and Bcr mainly in the cytosol. An overlay assay performed with [gamma-(32)P]GTP-bound Rac revealed dominant GAP activity related to a 50 kDa protein both in the membrane and cytosol. This activity could be identified by Western blotting and immunoprecipitation with specific antibody directed against the GAP domain of p50RhoGAP. Using a semirecombinant or fully purified cell-free activation assay of the Rac-activated enzyme NADPH oxidase, we demonstrated the regulatory effect of both the membrane-localized and soluble GAPs. We suggest that in neutrophil granulocytes Rac-GAPs have redundant function and represent suitable targets for both the up-regulation and down-regulation of the NADPH oxidase.

Full Text

The Full Text of this article is available as a PDF (188.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo A., Pick E., Hall A., Totty N., Teahan C. G., Segal A. W. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991 Oct 17;353(6345):668–670. doi: 10.1038/353668a0. [DOI] [PubMed] [Google Scholar]
  2. Arcaro A., Wymann M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993 Dec 1;296(Pt 2):297–301. doi: 10.1042/bj2960297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aviram I., Sharabani M. Kinetics of cell-free activation of neutrophil NADPH oxidase. Effects of neomycin and guanine nucleotides. Biochem J. 1989 Jul 15;261(2):477–482. doi: 10.1042/bj2610477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Babior B. M. NADPH oxidase: an update. Blood. 1999 Mar 1;93(5):1464–1476. [PubMed] [Google Scholar]
  5. Barfod E. T., Zheng Y., Kuang W. J., Hart M. J., Evans T., Cerione R. A., Ashkenazi A. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. J Biol Chem. 1993 Dec 15;268(35):26059–26062. [PubMed] [Google Scholar]
  6. Batot G., Paclet M. H., Doussière J., Vergnaud S., Martel C., Vignais P. V., Morel F. Biochemical and immunochemical properties of B lymphocyte cytochrome b558. Biochim Biophys Acta. 1998 Mar 5;1406(2):188–202. doi: 10.1016/s0925-4439(98)00004-0. [DOI] [PubMed] [Google Scholar]
  7. Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
  8. Bokoch G. M., Vlahos C. J., Wang Y., Knaus U. G., Traynor-Kaplan A. E. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J. 1996 May 1;315(Pt 3):775–779. doi: 10.1042/bj3150775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  11. Diekmann D., Abo A., Johnston C., Segal A. W., Hall A. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science. 1994 Jul 22;265(5171):531–533. doi: 10.1126/science.8036496. [DOI] [PubMed] [Google Scholar]
  12. Diekmann D., Brill S., Garrett M. D., Totty N., Hsuan J., Monfries C., Hall C., Lim L., Hall A. Bcr encodes a GTPase-activating protein for p21rac. Nature. 1991 May 30;351(6325):400–402. doi: 10.1038/351400a0. [DOI] [PubMed] [Google Scholar]
  13. Ding J., Badwey J. A. Neutrophils stimulated with a chemotactic peptide or a phorbol ester exhibit different alterations in the activities of a battery of protein kinases. J Biol Chem. 1993 Mar 5;268(7):5234–5240. [PubMed] [Google Scholar]
  14. Ding J., Knaus U. G., Lian J. P., Bokoch G. M., Badwey J. A. The renaturable 69- and 63-kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases. J Biol Chem. 1996 Oct 4;271(40):24869–24873. doi: 10.1074/jbc.271.40.24869. [DOI] [PubMed] [Google Scholar]
  15. Dorseuil O., Reibel L., Bokoch G. M., Camonis J., Gacon G. The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem. 1996 Jan 5;271(1):83–88. doi: 10.1074/jbc.271.1.83. [DOI] [PubMed] [Google Scholar]
  16. Dusi S., Donini M., Wientjes F., Rossi F. Translocation of p190rho guanosine triphosphatase-activating protein from cytosol to the membrane in human neutrophils stimulated with different agonists. Biochem Biophys Res Commun. 1996 Feb 27;219(3):859–862. doi: 10.1006/bbrc.1996.0323. [DOI] [PubMed] [Google Scholar]
  17. Fuchs A., Dagher M. C., Jouan A., Vignais P. V. Activation of the O2(-)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur J Biochem. 1994 Dec 1;226(2):587–595. doi: 10.1111/j.1432-1033.1994.tb20084.x. [DOI] [PubMed] [Google Scholar]
  18. Gabig T. G., English D., Akard L. P., Schell M. J. Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxin-insensitive G protein. J Biol Chem. 1987 Feb 5;262(4):1685–1690. [PubMed] [Google Scholar]
  19. Garrett M. D., Major G. N., Totty N., Hall A. Purification and N-terminal sequence of the p21rho GTPase-activating protein, rho GAP. Biochem J. 1991 Jun 15;276(Pt 3):833–836. doi: 10.1042/bj2760833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grandvaux N., Grizot S., Vignais P. V., Dagher M. C. The Ku70 autoantigen interacts with p40phox in B lymphocytes. J Cell Sci. 1999 Feb;112(Pt 4):503–513. doi: 10.1242/jcs.112.4.503. [DOI] [PubMed] [Google Scholar]
  21. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  22. Han J., Luby-Phelps K., Das B., Shu X., Xia Y., Mosteller R. D., Krishna U. M., Falck J. R., White M. A., Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 1998 Jan 23;279(5350):558–560. doi: 10.1126/science.279.5350.558. [DOI] [PubMed] [Google Scholar]
  23. Hancock J. F., Hall A. A novel role for RhoGDI as an inhibitor of GAP proteins. EMBO J. 1993 May;12(5):1915–1921. doi: 10.1002/j.1460-2075.1993.tb05840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hart M. J., Shinjo K., Hall A., Evans T., Cerione R. A. Identification of the human platelet GTPase activating protein for the CDC42Hs protein. J Biol Chem. 1991 Nov 5;266(31):20840–20848. [PubMed] [Google Scholar]
  25. Heyworth P. G., Knaus U. G., Settleman J., Curnutte J. T., Bokoch G. M. Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell. 1993 Nov;4(11):1217–1223. doi: 10.1091/mbc.4.11.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  27. Hirsch E., Katanaev V. L., Garlanda C., Azzolino O., Pirola L., Silengo L., Sozzani S., Mantovani A., Altruda F., Wymann M. P. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000 Feb 11;287(5455):1049–1053. doi: 10.1126/science.287.5455.1049. [DOI] [PubMed] [Google Scholar]
  28. Hjorth R., Jonsson A. K., Vretblad P. A rapid method for purification of human granulocytes using percoll. A comparison with dextran sedimentation. J Immunol Methods. 1981;43(1):95–101. doi: 10.1016/0022-1759(81)90040-5. [DOI] [PubMed] [Google Scholar]
  29. Keely P. J., Westwick J. K., Whitehead I. P., Der C. J., Parise L. V. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997 Dec 11;390(6660):632–636. doi: 10.1038/37656. [DOI] [PubMed] [Google Scholar]
  30. Knaus U. G., Morris S., Dong H. J., Chernoff J., Bokoch G. M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science. 1995 Jul 14;269(5221):221–223. doi: 10.1126/science.7618083. [DOI] [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lancaster C. A., Taylor-Harris P. M., Self A. J., Brill S., van Erp H. E., Hall A. Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J Biol Chem. 1994 Jan 14;269(2):1137–1142. [PubMed] [Google Scholar]
  33. Leung T., How B. E., Manser E., Lim L. Germ cell beta-chimaerin, a new GTPase-activating protein for p21rac, is specifically expressed during the acrosomal assembly stage in rat testis. J Biol Chem. 1993 Feb 25;268(6):3813–3816. [PubMed] [Google Scholar]
  34. Leusen J. H., de Klein A., Hilarius P. M., Ahlin A., Palmblad J., Smith C. I., Diekmann D., Hall A., Verhoeven A. J., Roos D. Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med. 1996 Oct 1;184(4):1243–1249. doi: 10.1084/jem.184.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Li Z., Jiang H., Xie W., Zhang Z., Smrcka A. V., Wu D. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science. 2000 Feb 11;287(5455):1046–1049. doi: 10.1126/science.287.5455.1046. [DOI] [PubMed] [Google Scholar]
  36. Ligeti E., Doussiere J., Vignais P. V. Activation of the O2(.-)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry. 1988 Jan 12;27(1):193–200. doi: 10.1021/bi00401a029. [DOI] [PubMed] [Google Scholar]
  37. Manser E., Leung T., Lim L. Identification of GTPase-activating proteins by nitrocellulose overlay assay. Methods Enzymol. 1995;256:130–139. doi: 10.1016/0076-6879(95)56018-1. [DOI] [PubMed] [Google Scholar]
  38. Manser E., Leung T., Monfries C., Teo M., Hall C., Lim L. Diversity and versatility of GTPase activating proteins for the p21rho subfamily of ras G proteins detected by a novel overlay assay. J Biol Chem. 1992 Aug 15;267(23):16025–16028. [PubMed] [Google Scholar]
  39. Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
  40. Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
  41. Morel F., Doussiere J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem. 1991 Nov 1;201(3):523–546. doi: 10.1111/j.1432-1033.1991.tb16312.x. [DOI] [PubMed] [Google Scholar]
  42. Morii N., Kawano K., Sekine A., Yamada T., Narumiya S. Purification of GTPase-activating protein specific for the rho gene products. J Biol Chem. 1991 Apr 25;266(12):7646–7650. [PubMed] [Google Scholar]
  43. Okada T., Sakuma L., Fukui Y., Hazeki O., Ui M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J Biol Chem. 1994 Feb 4;269(5):3563–3567. [PubMed] [Google Scholar]
  44. Qiu R. G., Chen J., Kirn D., McCormick F., Symons M. An essential role for Rac in Ras transformation. Nature. 1995 Mar 30;374(6521):457–459. doi: 10.1038/374457a0. [DOI] [PubMed] [Google Scholar]
  45. Segal A. W., Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993 Feb;18(2):43–47. doi: 10.1016/0968-0004(93)90051-n. [DOI] [PubMed] [Google Scholar]
  46. Seifert R., Rosenthal W., Schultz G. Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett. 1986 Sep 1;205(1):161–165. doi: 10.1016/0014-5793(86)80886-9. [DOI] [PubMed] [Google Scholar]
  47. Self A. J., Hall A. Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates. Methods Enzymol. 1995;256:67–76. doi: 10.1016/0076-6879(95)56010-6. [DOI] [PubMed] [Google Scholar]
  48. Self A. J., Hall A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 1995;256:3–10. doi: 10.1016/0076-6879(95)56003-3. [DOI] [PubMed] [Google Scholar]
  49. Symons M., Settleman J. Rho family GTPases: more than simple switches. Trends Cell Biol. 2000 Oct;10(10):415–419. doi: 10.1016/s0962-8924(00)01832-8. [DOI] [PubMed] [Google Scholar]
  50. Szászi K., Korda A., Wölfl J., Paclet M. H., Morel F., Ligeti E. Possible role of RAC-GTPase-activating protein in the termination of superoxide production in phagocytic cells. Free Radic Biol Med. 1999 Oct;27(7-8):764–772. doi: 10.1016/s0891-5849(99)00126-4. [DOI] [PubMed] [Google Scholar]
  51. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997 Sep 15;11(18):2295–2322. doi: 10.1101/gad.11.18.2295. [DOI] [PubMed] [Google Scholar]
  52. Vojtek A. B., Cooper J. A. Rho family members: activators of MAP kinase cascades. Cell. 1995 Aug 25;82(4):527–529. doi: 10.1016/0092-8674(95)90023-3. [DOI] [PubMed] [Google Scholar]
  53. Voncken J. W., van Schaick H., Kaartinen V., Deemer K., Coates T., Landing B., Pattengale P., Dorseuil O., Bokoch G. M., Groffen J. Increased neutrophil respiratory burst in bcr-null mutants. Cell. 1995 Mar 10;80(5):719–728. doi: 10.1016/0092-8674(95)90350-x. [DOI] [PubMed] [Google Scholar]
  54. Wölfl J., Dagher M. C., Fuchs A., Geiszt M., Ligeti E. In vitro activation of the NADPH oxidase by fluoride. Possible involvement of a factor activating GTP hydrolysis on Rac (Rac-GAP). Eur J Biochem. 1996 Jul 15;239(2):369–375. doi: 10.1111/j.1432-1033.1996.0369u.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES