Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):859–868. doi: 10.1042/bj3550859

A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling.

R J Veldman 1, N Maestre 1, O M Aduib 1, J A Medin 1, R Salvayre 1, T Levade 1
PMCID: PMC1221804  PMID: 11311151

Abstract

Sphingomyelinases hydrolyse sphingomyelin to ceramide, a process involved in signal-transduction routes leading to apoptosis and various other cellular responses. In the present study, we investigated the sphingomyelinase content of caveolae, invaginated plasma-membrane microdomains that contain a variety of signalling molecules. These structures are highly enriched in sphingomyelin as well as in ceramide, which suggests that metabolism of these lipids might, to some extent, occur locally. By cell fractionation, we demonstrate that, in addition to a previously reported minute amount of acidic sphingomyelinase activity, a substantial amount of neutral sphingomyelinase activity resides in caveolae of human skin fibroblasts. This caveolar neutral sphingomyelinase activity was also detected in Niemann-Pick disease type A fibroblasts, which are completely devoid of functional acidic sphingomyelinase. Neutral (but not acidic) sphingomyelinase activity was specifically inhibited by a peptide that corresponds to the scaffolding domain of caveolin, which suggests a direct molecular interaction between the two proteins. In addition, this finding implies a cytosolic orientation of the caveolar neutral sphingomyelinase. Interestingly, stimulation of fibroblasts with tumour necrosis factor alpha (TNFalpha) resulted in a partial shift of its p55 receptor to caveolin-enriched membrane fractions and the appearance of caveolin-sensitive neutral sphingomyelinase activity in the non-caveolar fractions. These results suggest that (part of) the presently identified caveolar neutral sphingomyelinase activity is involved in TNFalpha signalling.

Full Text

The Full Text of this article is available as a PDF (257.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam-Klages S., Adam D., Wiegmann K., Struve S., Kolanus W., Schneider-Mergener J., Krönke M. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell. 1996 Sep 20;86(6):937–947. doi: 10.1016/s0092-8674(00)80169-5. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  3. Andrieu N., Salvayre R., Levade T. Comparative study of the metabolic pools of sphingomyelin and phosphatidylcholine sensitive to tumor necrosis factor. Eur J Biochem. 1996 Mar 1;236(2):738–745. doi: 10.1111/j.1432-1033.1996.00738.x. [DOI] [PubMed] [Google Scholar]
  4. Andrieu N., Salvayre R., Levade T. Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts. Biochem J. 1994 Oct 15;303(Pt 2):341–345. doi: 10.1042/bj3030341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernardo K., Krut O., Wiegmann K., Kreder D., Micheli M., Schäfer R., Sickman A., Schmidt W. E., Schröder J. M., Meyer H. E. Purification and characterization of a magnesium-dependent neutral sphingomyelinase from bovine brain. J Biol Chem. 2000 Mar 17;275(11):7641–7647. doi: 10.1074/jbc.275.11.7641. [DOI] [PubMed] [Google Scholar]
  6. Bilderback T. R., Grigsby R. J., Dobrowsky R. T. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J Biol Chem. 1997 Apr 18;272(16):10922–10927. doi: 10.1074/jbc.272.16.10922. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  8. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  9. Carman C. V., Lisanti M. P., Benovic J. L. Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem. 1999 Mar 26;274(13):8858–8864. doi: 10.1074/jbc.274.13.8858. [DOI] [PubMed] [Google Scholar]
  10. Chatelut M., Harzer K., Christomanou H., Feunteun J., Pieraggi M. T., Paton B. C., Kishimoto Y., O'Brien J. S., Basile J. P., Thiers J. C. Model SV40-transformed fibroblast lines for metabolic studies of human prosaposin and acid ceramidase deficiencies. Clin Chim Acta. 1997 Jun 27;262(1-2):61–76. doi: 10.1016/s0009-8981(97)06527-3. [DOI] [PubMed] [Google Scholar]
  11. Chatterjee S., Han H., Rollins S., Cleveland T. Molecular cloning, characterization, and expression of a novel human neutral sphingomyelinase. J Biol Chem. 1999 Dec 24;274(52):37407–37412. doi: 10.1074/jbc.274.52.37407. [DOI] [PubMed] [Google Scholar]
  12. Cifone M. G., De Maria R., Roncaioli P., Rippo M. R., Azuma M., Lanier L. L., Santoni A., Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994 Oct 1;180(4):1547–1552. doi: 10.1084/jem.180.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cock J. G., Tepper A. D., de Vries E., van Blitterswijk W. J., Borst J. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J Biol Chem. 1998 Mar 27;273(13):7560–7565. doi: 10.1074/jbc.273.13.7560. [DOI] [PubMed] [Google Scholar]
  14. Couet J., Li S., Okamoto T., Ikezu T., Lisanti M. P. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997 Mar 7;272(10):6525–6533. doi: 10.1074/jbc.272.10.6525. [DOI] [PubMed] [Google Scholar]
  15. Czarny M., Lavie Y., Fiucci G., Liscovitch M. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-182-101. J Biol Chem. 1999 Jan 29;274(5):2717–2724. doi: 10.1074/jbc.274.5.2717. [DOI] [PubMed] [Google Scholar]
  16. Dobrowsky R. T., Jenkins G. M., Hannun Y. A. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J Biol Chem. 1995 Sep 22;270(38):22135–22142. doi: 10.1074/jbc.270.38.22135. [DOI] [PubMed] [Google Scholar]
  17. Fensome A. C., Rodrigues-Lima F., Josephs M., Paterson H. F., Katan M. A neutral magnesium-dependent sphingomyelinase isoform associated with intracellular membranes and reversibly inhibited by reactive oxygen species. J Biol Chem. 2000 Jan 14;275(2):1128–1136. doi: 10.1074/jbc.275.2.1128. [DOI] [PubMed] [Google Scholar]
  18. Fra A. M., Williamson E., Simons K., Parton R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8655–8659. doi: 10.1073/pnas.92.19.8655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Furuchi T., Anderson R. G. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem. 1998 Aug 14;273(33):21099–21104. doi: 10.1074/jbc.273.33.21099. [DOI] [PubMed] [Google Scholar]
  20. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  21. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  22. Hofmann K., Tomiuk S., Wolff G., Stoffel W. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5895–5900. doi: 10.1073/pnas.97.11.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
  24. Hooper N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol. 1999 Apr-Jun;16(2):145–156. doi: 10.1080/096876899294607. [DOI] [PubMed] [Google Scholar]
  25. Huang C., Hepler J. R., Chen L. T., Gilman A. G., Anderson R. G., Mumby S. M. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell. 1997 Dec;8(12):2365–2378. doi: 10.1091/mbc.8.12.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Isshiki M., Ando J., Korenaga R., Kogo H., Fujimoto T., Fujita T., Kamiya A. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5009–5014. doi: 10.1073/pnas.95.9.5009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jaffrézou J. P., Levade T., Bettaïeb A., Andrieu N., Bezombes C., Maestre N., Vermeersch S., Rousse A., Laurent G. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 1996 May 15;15(10):2417–2424. [PMC free article] [PubMed] [Google Scholar]
  28. Ko Y. G., Lee J. S., Kang Y. S., Ahn J. H., Seo J. S. TNF-alpha-mediated apoptosis is initiated in caveolae-like domains. J Immunol. 1999 Jun 15;162(12):7217–7223. [PubMed] [Google Scholar]
  29. Levade T., Andrieu-Abadie N., Ségui B., Augé N., Chatelut M., Jaffrézou J. P., Salvayre R. Sphingomyelin-degrading pathways in human cells role in cell signalling. Chem Phys Lipids. 1999 Nov;102(1-2):167–178. doi: 10.1016/s0009-3084(99)00085-7. [DOI] [PubMed] [Google Scholar]
  30. Levade T., Jaffrézou J. P. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta. 1999 Apr 19;1438(1):1–17. doi: 10.1016/s1388-1981(99)00038-4. [DOI] [PubMed] [Google Scholar]
  31. Levade T., Salvayre R., Douste-Blazy L. Sphingomyelinases and Niemann-Pick disease. J Clin Chem Clin Biochem. 1986 Apr;24(4):205–220. [PubMed] [Google Scholar]
  32. Linardic C. M., Hannun Y. A. Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. J Biol Chem. 1994 Sep 23;269(38):23530–23537. [PubMed] [Google Scholar]
  33. Lisanti M. P., Tang Z., Scherer P. E., Sargiacomo M. Caveolae purification and glycosylphosphatidylinositol-linked protein sorting in polarized epithelia. Methods Enzymol. 1995;250:655–668. doi: 10.1016/0076-6879(95)50103-7. [DOI] [PubMed] [Google Scholar]
  34. Liu B., Hassler D. F., Smith G. K., Weaver K., Hannun Y. A. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain. J Biol Chem. 1998 Dec 18;273(51):34472–34479. doi: 10.1074/jbc.273.51.34472. [DOI] [PubMed] [Google Scholar]
  35. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  36. Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mineo C., Anderson R. G. A vacuolar-type proton ATPase mediates acidification of plasmalemmal vesicles during potocytosis. Exp Cell Res. 1996 May 1;224(2):237–242. doi: 10.1006/excr.1996.0133. [DOI] [PubMed] [Google Scholar]
  38. Mineo C., James G. L., Smart E. J., Anderson R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem. 1996 May 17;271(20):11930–11935. doi: 10.1074/jbc.271.20.11930. [DOI] [PubMed] [Google Scholar]
  39. Nix M., Stoffel W. Perturbation of membrane microdomains reduces mitogenic signaling and increases susceptibility to apoptosis after T cell receptor stimulation. Cell Death Differ. 2000 May;7(5):413–424. doi: 10.1038/sj.cdd.4400666. [DOI] [PubMed] [Google Scholar]
  40. Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998 Mar 6;273(10):5419–5422. doi: 10.1074/jbc.273.10.5419. [DOI] [PubMed] [Google Scholar]
  41. Parton R. G., Joggerst B., Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. doi: 10.1083/jcb.127.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  43. Santana P., Peña L. A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E. H., Fuks Z., Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996 Jul 26;86(2):189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
  44. Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. doi: 10.1083/jcb.122.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schnitzer J. E., McIntosh D. P., Dvorak A. M., Liu J., Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science. 1995 Sep 8;269(5229):1435–1439. doi: 10.1126/science.7660128. [DOI] [PubMed] [Google Scholar]
  46. Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992 Nov 27;71(5):765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  47. Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
  48. Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., Okamoto T., Lisanti M. P. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999 Nov;19(11):7289–7304. doi: 10.1128/mcb.19.11.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Smart E. J., Ying Y. S., Anderson R. G. Hormonal regulation of caveolae internalization. J Cell Biol. 1995 Nov;131(4):929–938. doi: 10.1083/jcb.131.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Smart E. J., Ying Y. s., Donzell W. C., Anderson R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem. 1996 Nov 15;271(46):29427–29435. doi: 10.1074/jbc.271.46.29427. [DOI] [PubMed] [Google Scholar]
  51. Tomiuk S., Hofmann K., Nix M., Zumbansen M., Stoffel W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3638–3643. doi: 10.1073/pnas.95.7.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tomiuk S., Zumbansen M., Stoffel W. Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem. 2000 Feb 25;275(8):5710–5717. doi: 10.1074/jbc.275.8.5710. [DOI] [PubMed] [Google Scholar]
  53. Van Veldhoven P. P., Matthews T. J., Bolognesi D. P., Bell R. M. Changes in bioactive lipids, alkylacylglycerol and ceramide, occur in HIV-infected cells. Biochem Biophys Res Commun. 1992 Aug 31;187(1):209–216. doi: 10.1016/s0006-291x(05)81480-9. [DOI] [PubMed] [Google Scholar]
  54. Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES