Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):97–103. doi: 10.1042/0264-6021:3560097

HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction.

C Gil 1, I Chaib-Oukadour 1, J Blasi 1, J Aguilera 1
PMCID: PMC1221816  PMID: 11336640

Abstract

A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component.

Full Text

The Full Text of this article is available as a PDF (288.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera J., Lopez L. A., Yavin E. Tetanus toxin-induced protein kinase C activation and elevated serotonin levels in the perinatal rat brain. FEBS Lett. 1990 Apr 9;263(1):61–65. doi: 10.1016/0014-5793(90)80705-n. [DOI] [PubMed] [Google Scholar]
  2. Aguilera J., Padrós-Giralt C., Habig W. H., Yavin E. GT1b ganglioside prevents tetanus toxin-induced protein kinase C activation and down-regulation in the neonatal brain in vivo. J Neurochem. 1993 Feb;60(2):709–713. doi: 10.1111/j.1471-4159.1993.tb03205.x. [DOI] [PubMed] [Google Scholar]
  3. Aguilera J., Yavin E. In vivo translocation and down-regulation of protein kinase C following intraventricular administration of tetanus toxin. J Neurochem. 1990 Jan;54(1):339–342. doi: 10.1111/j.1471-4159.1990.tb13319.x. [DOI] [PubMed] [Google Scholar]
  4. Ashton A. C., Li Y., Doussau F., Weller U., Dougan G., Poulain B., Dolly J. O. Tetanus toxin inhibits neuroexocytosis even when its Zn(2+)-dependent protease activity is removed. J Biol Chem. 1995 Dec 29;270(52):31386–31390. doi: 10.1074/jbc.270.52.31386. [DOI] [PubMed] [Google Scholar]
  5. Barbacid M. Nerve growth factor: a tale of two receptors. Oncogene. 1993 Aug;8(8):2033–2042. [PubMed] [Google Scholar]
  6. Dechant G., Barde Y. A. Signalling through the neurotrophin receptor p75NTR. Curr Opin Neurobiol. 1997 Jun;7(3):413–418. doi: 10.1016/s0959-4388(97)80071-2. [DOI] [PubMed] [Google Scholar]
  7. Facchiano F., Valtorta F., Benfenati F., Luini A. The transglutaminase hypothesis for the action of tetanus toxin. Trends Biochem Sci. 1993 Sep;18(9):327–329. doi: 10.1016/0968-0004(93)90066-v. [DOI] [PubMed] [Google Scholar]
  8. Fishman P. S., Parks D. A., Patwardhan A. J., Matthews C. C. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)). Nat Toxins. 1999;7(4):151–156. [PubMed] [Google Scholar]
  9. Gil C., Chaïb-Oukadour I., Pelliccioni P., Aguilera J. Activation of signal transduction pathways involving trkA, PLCgamma-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett. 2000 Sep 15;481(2):177–182. doi: 10.1016/s0014-5793(00)02002-0. [DOI] [PubMed] [Google Scholar]
  10. Gil C., Pelliccioni P., Itarte E., Aguilera J. Differential action of nerve growth factor and phorbol ester TPA on rat synaptosomal PKC isoenzymes. Neurochem Int. 1999 Oct;35(4):281–291. doi: 10.1016/s0197-0186(99)00076-5. [DOI] [PubMed] [Google Scholar]
  11. Gil C., Ruiz-Meana M., Alava M., Yavin E., Aguilera J. Tetanus toxin enhances protein kinase C activity translocation and increases polyphosphoinositide hydrolysis in rat cerebral cortex preparations. J Neurochem. 1998 Apr;70(4):1636–1643. doi: 10.1046/j.1471-4159.1998.70041636.x. [DOI] [PubMed] [Google Scholar]
  12. Goldberg R. L., Costa T., Habig W. H., Kohn L. D., Hardegree M. C. Characterization of fragment C and tetanus toxin binding to rat brain membranes. Mol Pharmacol. 1981 Nov;20(3):565–570. [PubMed] [Google Scholar]
  13. Grimes M. L., Zhou J., Beattie E. C., Yuen E. C., Hall D. E., Valletta J. S., Topp K. S., LaVail J. H., Bunnett N. W., Mobley W. C. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci. 1996 Dec 15;16(24):7950–7964. doi: 10.1523/JNEUROSCI.16-24-07950.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halpern J. L., Loftus A. Characterization of the receptor-binding domain of tetanus toxin. J Biol Chem. 1993 May 25;268(15):11188–11192. [PubMed] [Google Scholar]
  15. Herreros J., Lalli G., Schiavo G. C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J. 2000 Apr 1;347(Pt 1):199–204. [PMC free article] [PubMed] [Google Scholar]
  16. Hill C. S., Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. doi: 10.1016/0092-8674(95)90403-4. [DOI] [PubMed] [Google Scholar]
  17. Ho J. L., Klempner M. S. Diminished activity of protein kinase C in tetanus toxin-treated macrophages and in the spinal cord of mice manifesting generalized tetanus intoxication. J Infect Dis. 1988 May;157(5):925–933. doi: 10.1093/infdis/157.5.925. [DOI] [PubMed] [Google Scholar]
  18. Ibáez C. F., Ebendal T., Persson H. Chimeric molecules with multiple neurotrophic activities reveal structural elements determining the specificities of NGF and BDNF. EMBO J. 1991 Aug;10(8):2105–2110. doi: 10.1002/j.1460-2075.1991.tb07743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inserte J., Najib A., Pelliccioni P., Gil C., Aguilera J. Inhibition by tetanus toxin of sodium-dependent, high-affinity [3H]5-hydroxytryptamine uptake in rat synaptosomes. Biochem Pharmacol. 1999 Jan 1;57(1):111–120. doi: 10.1016/s0006-2952(98)00281-0. [DOI] [PubMed] [Google Scholar]
  20. Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
  21. Li L., Singh B. R. In vitro translation of type A Clostridium botulinum neurotoxin heavy chain and analysis of its binding to rat synaptosomes. J Protein Chem. 1999 Jan;18(1):89–95. doi: 10.1023/a:1020655701852. [DOI] [PubMed] [Google Scholar]
  22. Liang F., Jones E. G. Zif268 and Fos-like immunoreactivity in tetanus toxin-induced epilepsy: reciprocal changes in the epileptic focus and the surround. Brain Res. 1997 Dec 19;778(2):281–292. doi: 10.1016/s0006-8993(97)01049-4. [DOI] [PubMed] [Google Scholar]
  23. Manning K. A., Erichsen J. T., Evinger C. Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience. 1990;34(1):251–263. doi: 10.1016/0306-4522(90)90319-y. [DOI] [PubMed] [Google Scholar]
  24. Morrison D. K., Heidecker G., Rapp U. R., Copeland T. D. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993 Aug 15;268(23):17309–17316. [PubMed] [Google Scholar]
  25. Najib A., Pelliccioni P., Gil C., Aguilera J. Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes. J Neurochem. 1999 May;72(5):1991–1998. doi: 10.1046/j.1471-4159.1999.0721991.x. [DOI] [PubMed] [Google Scholar]
  26. Najib A., Pelliccioni P., Gil C., Aguilera J. Serotonin transporter phosphorylation modulated by tetanus toxin. FEBS Lett. 2000 Dec 8;486(2):136–142. doi: 10.1016/s0014-5793(00)02294-8. [DOI] [PubMed] [Google Scholar]
  27. Niemann H., Blasi J., Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 1994 May;4(5):179–185. doi: 10.1016/0962-8924(94)90203-8. [DOI] [PubMed] [Google Scholar]
  28. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
  29. Notice: Symposium on the cytology of nervous tissue. J Anat. 1962 Jan;96(Pt 1):1–2. [PMC free article] [PubMed] [Google Scholar]
  30. Ohmichi M., Decker S. J., Pang L., Saltiel A. R. Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase C gamma 1. Biochem Biophys Res Commun. 1991 Aug 30;179(1):217–223. doi: 10.1016/0006-291x(91)91357-i. [DOI] [PubMed] [Google Scholar]
  31. Robbins D. J., Zhen E., Owaki H., Vanderbilt C. A., Ebert D., Geppert T. D., Cobb M. H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem. 1993 Mar 5;268(7):5097–5106. [PubMed] [Google Scholar]
  32. Rogers T. B., Snyder S. H. High affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem. 1981 Mar 10;256(5):2402–2407. [PubMed] [Google Scholar]
  33. Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
  34. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  35. Segal R. A., Greenberg M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1996;19:463–489. doi: 10.1146/annurev.ne.19.030196.002335. [DOI] [PubMed] [Google Scholar]
  36. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  37. Yavin E., Nathan A. Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem. 1986 Jan 15;154(2):403–407. doi: 10.1111/j.1432-1033.1986.tb09412.x. [DOI] [PubMed] [Google Scholar]
  38. Zhang B. H., Farrell G. C. Chronic ethanol consumption disrupts complexation between EGF receptor and phospholipase C-gamma1: relevance to impaired hepatocyte proliferation. Biochem Biophys Res Commun. 1999 Apr 2;257(1):89–94. doi: 10.1006/bbrc.1999.0403. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES