Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):105–110. doi: 10.1042/0264-6021:3560105

Inhibition of neuronal nitric oxide synthase by 6-nitrocatecholamines, putative reaction products of nitric oxide with catecholamines under oxidative stress conditions.

A Palumbo 1, G Astarita 1, M d'Ischia 1
PMCID: PMC1221817  PMID: 11336641

Abstract

6-Nitrodopamine and 6-nitronoradrenaline (6-nitronorepinephrine), putative products of the nitric oxide (NO)-dependent nitration of dopamine and noradrenaline, are reported to be reversible, competitive inhibitors of neuronal nitric oxide synthase (nNOS) with K(i) values of 45 and 52 microM respectively. The nitrocatecholamines inhibited H(2)O(2) production in the absence of L-arginine and tetrahydrobiopterin (BH(4)) (the IC(50) values for 6-nitrodopamine and 6-nitronoradrenaline were 85 and 55 microM respectively) but without affecting cytochrome c reduction. The apparent K(i) values for nitrocatecholamine inhibition of enzyme activation by BH(4) were 18 microM for 6-nitrodopamine and 40 microM for 6-nitronoradrenaline. Both nitrocatecholamines antagonized the dimerization of nNOS induced by BH(4) and by L-arginine, the effect being reversed by BH(4) (more than 10 microM) and L-arginine (e.g. 100 microM). Overall, these results suggest that nitrocatecholamines interfere with nNOS activity by binding to the enzyme in the proximity of the substrate and BH(4)-binding sites near the haem group.

Full Text

The Full Text of this article is available as a PDF (129.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busconi L., Michel T. Recombinant endothelial nitric oxide synthase: post-translational modifications in a baculovirus expression system. Mol Pharmacol. 1995 Apr;47(4):655–659. [PubMed] [Google Scholar]
  2. Chiari A., Li X. H., Xu Z., Pan H. L., Eisenach J. C. Formation of 6-nitro-norepinephrine from nitric oxide and norepinephrine in the spinal cord and its role in spinal analgesia. Neuroscience. 2000;101(1):189–196. doi: 10.1016/s0306-4522(00)00328-6. [DOI] [PubMed] [Google Scholar]
  3. Frey C., Narayanan K., McMillan K., Spack L., Gross S. S., Masters B. S., Griffith O. W. L-thiocitrulline. A stereospecific, heme-binding inhibitor of nitric-oxide synthases. J Biol Chem. 1994 Oct 21;269(42):26083–26091. [PubMed] [Google Scholar]
  4. Garvey E. P., Oplinger J. A., Tanoury G. J., Sherman P. A., Fowler M., Marshall S., Harmon M. F., Paith J. E., Furfine E. S. Potent and selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas. J Biol Chem. 1994 Oct 28;269(43):26669–26676. [PubMed] [Google Scholar]
  5. Harteneck C., Klatt P., Schmidt K., Mayer B. Expression of rat brain nitric oxide synthase in baculovirus-infected insect cells and characterization of the purified enzyme. Biochem J. 1994 Dec 15;304(Pt 3):683–686. doi: 10.1042/bj3040683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997 Mar;20(3):132–139. doi: 10.1016/s0166-2236(96)10074-6. [DOI] [PubMed] [Google Scholar]
  8. Klatt P., Schmid M., Leopold E., Schmidt K., Werner E. R., Mayer B. The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem. 1994 May 13;269(19):13861–13866. [PubMed] [Google Scholar]
  9. Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H. P., Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. doi: 10.1002/j.1460-2075.1995.tb00038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klatt P., Schmidt K., Werner E. R., Mayer B. Determination of nitric oxide synthase cofactors: heme, FAD, FMN, and tetrahydrobiopterin. Methods Enzymol. 1996;268:358–365. doi: 10.1016/s0076-6879(96)68038-0. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Liu Y. Nitric oxide influences dopaminergic processes. Adv Neuroimmunol. 1996;6(3):259–264. doi: 10.1016/s0960-5428(96)00021-6. [DOI] [PubMed] [Google Scholar]
  13. Macarthur H., Mattammal M. B., Westfall T. C. A new perspective on the inhibitory role of nitric oxide in sympathetic neurotransmission. Biochem Biophys Res Commun. 1995 Nov 13;216(2):686–692. doi: 10.1006/bbrc.1995.2676. [DOI] [PubMed] [Google Scholar]
  14. Marletta M. A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell. 1994 Sep 23;78(6):927–930. doi: 10.1016/0092-8674(94)90268-2. [DOI] [PubMed] [Google Scholar]
  15. Mayer B., Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 1997 Dec;22(12):477–481. doi: 10.1016/s0968-0004(97)01147-x. [DOI] [PubMed] [Google Scholar]
  16. Mayer B., Klatt P., Werner E. R., Schmidt K. Identification of imidazole as L-arginine-competitive inhibitor of porcine brain nitric oxide synthase. FEBS Lett. 1994 Aug 22;350(2-3):199–202. doi: 10.1016/0014-5793(94)00766-7. [DOI] [PubMed] [Google Scholar]
  17. Mayer B., Klatt P., Werner E. R., Schmidt K. Molecular mechanisms of inhibition of porcine brain nitric oxide synthase by the antinociceptive drug 7-nitro-indazole. Neuropharmacology. 1994 Nov;33(11):1253–1259. doi: 10.1016/0028-3908(94)90024-8. [DOI] [PubMed] [Google Scholar]
  18. Palumbo A., Napolitano A., Barone P., d'Ischia M. Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration. Chem Res Toxicol. 1999 Dec;12(12):1213–1222. doi: 10.1021/tx990121g. [DOI] [PubMed] [Google Scholar]
  19. Raman C. S., Li H., Martásek P., Král V., Masters B. S., Poulos T. L. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998 Dec 23;95(7):939–950. doi: 10.1016/s0092-8674(00)81718-3. [DOI] [PubMed] [Google Scholar]
  20. Reif A., Fröhlich L. G., Kotsonis P., Frey A., Bömmel H. M., Wink D. A., Pfleiderer W., Schmidt H. H. Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. J Biol Chem. 1999 Aug 27;274(35):24921–24929. doi: 10.1074/jbc.274.35.24921. [DOI] [PubMed] [Google Scholar]
  21. Shintani F., Kinoshita T., Kanba S., Ishikawa T., Suzuki E., Sasakawa N., Kato R., Asai M., Nakaki T. Bioactive 6-nitronorepinephrine identified in mammalian brain. J Biol Chem. 1996 Jun 7;271(23):13561–13565. doi: 10.1074/jbc.271.23.13561. [DOI] [PubMed] [Google Scholar]
  22. Wolff D. J., Gribin B. J. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indazole agents. Arch Biochem Biophys. 1994 Jun;311(2):300–306. doi: 10.1006/abbi.1994.1241. [DOI] [PubMed] [Google Scholar]
  23. d'Ischia M., Costantini C. Nitric oxide-induced nitration of catecholamine neurotransmitters: a key to neuronal degeneration? Bioorg Med Chem. 1995 Jul;3(7):923–927. doi: 10.1016/0968-0896(95)00083-s. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES