Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):121–128. doi: 10.1042/0264-6021:3560121

Human alpha1-acid glycoprotein binds to CCR5 expressed on the plasma membrane of human primary macrophages.

A Atemezem 1, E Mbemba 1, R Vassy 1, H Slimani 1, L Saffar 1, L Gattegno 1
PMCID: PMC1221819  PMID: 11336643

Abstract

We have reported previously that human alpha(1)-acid glycoprotein (AGP) inhibits the infection of human monocyte-derived macrophages (MDM) by R5 HIV-1, and that a disulphide-bridged peptide mimicking the clade B HIV-1 gp120 consensus V3 domain (V3Cs) binds specifically to CCR5 (the major co-receptor of R5 HIV strains) on these cells [Seddiki, Rabehi, Benjouad, Saffar, Ferriere, Gluckman and Gattegno (1997) Glycobiology 7, 1229-1236]. The present study demonstrates that AGP binds specifically to MDM at high- and low-affinity binding sites with K(d) values of 16 nM and 4.9 microM respectively. The fact that heat denaturation of AGP only partly inhibited this binding (43%) suggests that protein-protein interactions are involved, as well as AGP glycans which are resistant to heat denaturation. Mannan, but not dextran, is a significant inhibitor (52%) of this binding, and sequential exoglycosidase treatment of AGP, which exposes penultimate mannose residues, has a strong stimulatory effect ( approximately 2.8-fold). Therefore AGP glycans (probably mannose residues) are involved, at least partly, in the binding of AGP to MDM. In addition, AGP inhibits the binding of V3Cs and macrophage inflammatory protein-1beta (MIP-1beta) to MDM. The anti-CCR5 monoclonal antibody 2D7, specific for the second extracellular loop of CCR5, also inhibited AGP binding (67%), whereas anti-CCR5 antibodies specific for the C-terminus of CCR5 region had no effect. Native AGP, like V3Cs (but not heat-denatured AGP), binds to 46 and 33-36 kDa electroblotted AGP-bound MDM membrane ligands, characterized as CCR5 by their interactions with anti-CCR5 antibodies and with MIP-1beta. Therefore both AGP glycans and MDM CCR5 are involved in the binding of AGP to MDM. This suggests that the inhibitory effect of AGP on the infection of human primary macrophages by R5 HIV-1 may be related to specific binding of AGP to a macrophage membrane lectin or lectin-like component and to CCR5.

Full Text

The Full Text of this article is available as a PDF (235.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S., Palmer A. C., Banerjee B., Fritchley S. J., Kirby J. A. Examination of the function of RANTES, MIP-1alpha, and MIP-1beta following interaction with heparin-like glycosaminoglycans. J Biol Chem. 2000 Apr 21;275(16):11721–11727. doi: 10.1074/jbc.275.16.11721. [DOI] [PubMed] [Google Scholar]
  2. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  3. Amara A., Gall S. L., Schwartz O., Salamero J., Montes M., Loetscher P., Baggiolini M., Virelizier J. L., Arenzana-Seisdedos F. HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med. 1997 Jul 7;186(1):139–146. doi: 10.1084/jem.186.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amzazi S., Ylisastigui L., Bakri Y., Rabehi L., Gattegno L., Parmentier M., Gluckman J. C., Benjouad A. The inhibitory effect of RANTES on the infection of primary macrophages by R5 human immunodeficiency virus type-1 depends on the macrophage activation state. Virology. 1998 Dec 5;252(1):96–105. doi: 10.1006/viro.1998.9452. [DOI] [PubMed] [Google Scholar]
  5. Berger E. A., Doms R. W., Fenyö E. M., Korber B. T., Littman D. R., Moore J. P., Sattentau Q. J., Schuitemaker H., Sodroski J., Weiss R. A. A new classification for HIV-1. Nature. 1998 Jan 15;391(6664):240–240. doi: 10.1038/34571. [DOI] [PubMed] [Google Scholar]
  6. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996 Aug 29;382(6594):829–833. doi: 10.1038/382829a0. [DOI] [PubMed] [Google Scholar]
  7. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
  8. Fenouillet E., Clerget-Raslain B., Gluckman J. C., Guétard D., Montagnier L., Bahraoui E. Role of N-linked glycans in the interaction between the envelope glycoprotein of human immunodeficiency virus and its CD4 cellular receptor. Structural enzymatic analysis. J Exp Med. 1989 Mar 1;169(3):807–822. doi: 10.1084/jem.169.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fenouillet E., Gluckman J. C., Bahraoui E. Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):2841–2848. doi: 10.1128/jvi.64.6.2841-2848.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fenouillet E., Gluckman J. C., Jones I. M. Functions of HIV envelope glycans. Trends Biochem Sci. 1994 Feb;19(2):65–70. doi: 10.1016/0968-0004(94)90034-5. [DOI] [PubMed] [Google Scholar]
  11. Haidar M., Seddiki N., Gluckman J. C., Gattegno L. Carbohydrate binding properties of the envelope glycoproteins of human immunodeficiency virus type 1. Glycoconj J. 1992 Dec;9(6):315–323. doi: 10.1007/BF00731092. [DOI] [PubMed] [Google Scholar]
  12. Klatzmann D. R., McDougal J. S., Maddon P. J. The CD4 molecule and HIV infection. Immunodefic Rev. 1990;2(1):43–66. [PubMed] [Google Scholar]
  13. Koopmann W., Krangel M. S. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. J Biol Chem. 1997 Apr 11;272(15):10103–10109. doi: 10.1074/jbc.272.15.10103. [DOI] [PubMed] [Google Scholar]
  14. Lee B., Sharron M., Blanpain C., Doranz B. J., Vakili J., Setoh P., Berg E., Liu G., Guy H. R., Durell S. R. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem. 1999 Apr 2;274(14):9617–9626. doi: 10.1074/jbc.274.14.9617. [DOI] [PubMed] [Google Scholar]
  15. Ly A., Stamatatos L. V2 loop glycosylation of the human immunodeficiency virus type 1 SF162 envelope facilitates interaction of this protein with CD4 and CCR5 receptors and protects the virus from neutralization by anti-V3 loop and anti-CD4 binding site antibodies. J Virol. 2000 Aug;74(15):6769–6776. doi: 10.1128/jvi.74.15.6769-6776.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mbemba E., Gluckman J. C., Gattegno L. Glycan and glycosaminoglycan binding properties of stromal cell-derived factor (SDF)-1alpha. Glycobiology. 2000 Jan;10(1):21–29. doi: 10.1093/glycob/10.1.21. [DOI] [PubMed] [Google Scholar]
  17. Mirzabekov T., Bannert N., Farzan M., Hofmann W., Kolchinsky P., Wu L., Wyatt R., Sodroski J. Enhanced expression, native purification, and characterization of CCR5, a principal HIV-1 coreceptor. J Biol Chem. 1999 Oct 1;274(40):28745–28750. doi: 10.1074/jbc.274.40.28745. [DOI] [PubMed] [Google Scholar]
  18. Oberlin E., Amara A., Bachelerie F., Bessia C., Virelizier J. L., Arenzana-Seisdedos F., Schwartz O., Heard J. M., Clark-Lewis I., Legler D. F. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996 Aug 29;382(6594):833–835. doi: 10.1038/382833a0. [DOI] [PubMed] [Google Scholar]
  19. Rabehi L., Ferriere F., Saffar L., Gattegno L. alpha 1-Acid glycoprotein binds human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein via N-linked glycans. Glycoconj J. 1995 Feb;12(1):7–16. doi: 10.1007/BF00731863. [DOI] [PubMed] [Google Scholar]
  20. Rabehi L., Seddiki N., Benjouad A., Gluckman J. C., Gattegno L. Interaction of human immunodeficiency virus type 1 envelope glycoprotein V3 loop with CCR5 and CD4 at the membrane of human primary macrophages. AIDS Res Hum Retroviruses. 1998 Dec 20;14(18):1605–1615. doi: 10.1089/aid.1998.14.1605. [DOI] [PubMed] [Google Scholar]
  21. Schmid K., Kaufmann H., Isemura S., Bauer F., Emura J., Motoyama T., Ishiguro M., Nanno S. Structure of 1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry. 1973 Jul 3;12(14):2711–2724. doi: 10.1021/bi00738a026. [DOI] [PubMed] [Google Scholar]
  22. Schmid K., Nimerg R. B., Kimura A., Yamaguchi H., Binette J. P. The carbohydrate units of human plasma alpha1-acid glycoprotein. Biochim Biophys Acta. 1977 Jun 24;492(2):291–302. doi: 10.1016/0005-2795(77)90080-0. [DOI] [PubMed] [Google Scholar]
  23. Seddiki N., Ben Younes-Chennoufi A., Benjouad A., Saffar L., Baumann N., Gluckman J. C., Gattegno L. Membrane glycolipids and human immunodeficiency virus infection of primary macrophages. AIDS Res Hum Retroviruses. 1996 May 20;12(8):695–703. doi: 10.1089/aid.1996.12.695. [DOI] [PubMed] [Google Scholar]
  24. Seddiki N., Rabehi L., Benjouad A., Saffar L., Ferriere F., Gluckman J. C., Gattegno L. Effect of mannosylated derivatives on HIV-1 infection of macrophages and lymphocytes. Glycobiology. 1997 Dec;7(8):1229–1236. doi: 10.1093/glycob/7.8.1229. [DOI] [PubMed] [Google Scholar]
  25. Seddiki N., Ramdani A., Saffar L., Portoukalian J., Gluckman J. C., Gattegno L. A monoclonal antibody directed to sulfatide inhibits the binding of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein to macrophages but not their infection by the virus. Biochim Biophys Acta. 1994 Feb 22;1225(3):289–296. doi: 10.1016/0925-4439(94)90009-4. [DOI] [PubMed] [Google Scholar]
  26. Sharon N. Carbohydrates as recognition determinants in phagocytosis and in lectin-mediated killing of target cells. Biol Cell. 1984;51(2):239–245. doi: 10.1111/j.1768-322x.1984.tb00304.x. [DOI] [PubMed] [Google Scholar]
  27. Solari R., Offord R. E., Remy S., Aubry J. P., Wells T. N., Whitehorn E., Oung T., Proudfoot A. E. Receptor-mediated endocytosis of CC-chemokines. J Biol Chem. 1997 Apr 11;272(15):9617–9620. doi: 10.1074/jbc.272.15.9617. [DOI] [PubMed] [Google Scholar]
  28. Stahl P. D. The mannose receptor and other macrophage lectins. Curr Opin Immunol. 1992 Feb;4(1):49–52. doi: 10.1016/0952-7915(92)90123-v. [DOI] [PubMed] [Google Scholar]
  29. Valentin A., Von Gegerfelt A., Matsuda S., Nilsson K., Asjö B. In vitro maturation of mononuclear phagocytes and susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr. 1991;4(8):751–759. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES