Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):137–142. doi: 10.1042/0264-6021:3560137

Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation.

M S Nash 1, K W Young 1, G B Willars 1, R A Challiss 1, S R Nahorski 1
PMCID: PMC1221821  PMID: 11336645

Abstract

The pleckstrin homology domain of phospholipase Cdelta1 (PH(PLCdelta)) binds Ins(1,4,5)P(3) and PtdIns(4,5)P(2) specifically, and can be used to detect changes in Ins(1,4,5)P(3) in single cells. A fusion construct of PH(PLCdelta) and enhanced green fluorescent protein (EGFP-PH(PLCdelta)) associates with the plasma membrane due to its association with PtdIns(4,5)P(2). However, PH(PLCdelta) has greater affinity for Ins(1,4,5)P(3) than PtdIns(4,5)P(2), and translocates to the cytosol as Ins(1,4,5)P(3) levels rise. Prolonged activation of group I metabotropic glutamate receptor 1alpha expressed in Chinese-hamster ovary cells or endogenous M(3) muscarinic receptors in SH-SY5Y neuroblastoma cells gave an initial transient peak in translocation, followed by a sustained plateau phase. This closely followed changes in cell population Ins(1,4,5)P(3) mass, but not PtdIns(4,5)P(2) levels, which decreased monophasically, as determined by radioreceptor assay. Translocation thus provides a real-time method to follow increases in Ins(1,4,5)P(3). Graded changes in Ins(1,4,5)P(3) in Chinese-hamster ovary-lac-mGlu1alpha cells could be detected with increasing glutamate concentrations, and dual loading with fura 2 and EGFP-PH(PLCdelta) showed that changes in intracellular Ca(2+) concentration closely paralleled Ins(1,4,5)P(3) production. Moreover, Ins(1,4,5)P(3) accumulation and intracellular Ca(2+) mobilization within single cells is graded in nature and dependent on both agonist concentration and receptor density.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins C. E., Taylor C. W. Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca(2+). Curr Biol. 1999 Oct 7;9(19):1115–1118. doi: 10.1016/s0960-9822(99)80481-3. [DOI] [PubMed] [Google Scholar]
  2. Allen V., Swigart P., Cheung R., Cockcroft S., Katan M. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 1997 Oct 15;327(Pt 2):545–552. doi: 10.1042/bj3270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bootman M. D., Cheek T. R., Moreton R. B., Bennett D. L., Berridge M. J. Smoothly graded Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. J Biol Chem. 1994 Oct 7;269(40):24783–24791. [PubMed] [Google Scholar]
  5. Bootman M. D., Young K. W., Young J. M., Moreton R. B., Berridge M. J. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in HeLa cells. Biochem J. 1996 Feb 15;314(Pt 1):347–354. doi: 10.1042/bj3140347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callamaras N., Parker I. Phasic characteristic of elementary Ca(2+) release sites underlies quantal responses to IP(3). EMBO J. 2000 Jul 17;19(14):3608–3617. doi: 10.1093/emboj/19.14.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hermans E., Challiss R. A., Nahorski S. R. Effects of varying the expression level of recombinant human mGlu1alpha receptors on the pharmacological properties of agonists and antagonists. Br J Pharmacol. 1999 Feb;126(4):873–882. doi: 10.1038/sj.bjp.0702359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hermans E., Young K. W., Challiss R. A., Nahorski S. R. Effects of human type 1alpha metabotropic glutamate receptor expression level on phosphoinositide and Ca2+ signalling in an inducible cell expression system. J Neurochem. 1998 Apr;70(4):1772–1775. doi: 10.1046/j.1471-4159.1998.70041772.x. [DOI] [PubMed] [Google Scholar]
  9. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  10. Kavran J. M., Klein D. E., Lee A., Falasca M., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem. 1998 Nov 13;273(46):30497–30508. doi: 10.1074/jbc.273.46.30497. [DOI] [PubMed] [Google Scholar]
  11. Kawabata S., Tsutsumi R., Kohara A., Yamaguchi T., Nakanishi S., Okada M. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature. 1996 Sep 5;383(6595):89–92. doi: 10.1038/383089a0. [DOI] [PubMed] [Google Scholar]
  12. Kim Y. H., Park T. J., Lee Y. H., Baek K. J., Suh P. G., Ryu S. H., Kim K. T. Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J Biol Chem. 1999 Sep 10;274(37):26127–26134. doi: 10.1074/jbc.274.37.26127. [DOI] [PubMed] [Google Scholar]
  13. Lambert D. G., Ghataorre A. S., Nahorski S. R. Muscarinic receptor binding characteristics of a human neuroblastoma SK-N-SH and its clones SH-SY5Y and SH-EP1. Eur J Pharmacol. 1989 Jun 8;165(1):71–77. doi: 10.1016/0014-2999(89)90771-1. [DOI] [PubMed] [Google Scholar]
  14. Lambert D. G., Nahorski S. R. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J. 1990 Jan 15;265(2):555–562. doi: 10.1042/bj2650555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer T., Stryer L. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A. 1990 May;87(10):3841–3845. doi: 10.1073/pnas.87.10.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muallem S., Pandol S. J., Beeker T. G. Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem. 1989 Jan 5;264(1):205–212. [PubMed] [Google Scholar]
  17. Oldershaw K. A., Nunn D. L., Taylor C. W. Quantal Ca2+ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J. 1991 Sep 15;278(Pt 3):705–708. doi: 10.1042/bj2780705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker I., Choi J., Yao Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium. 1996 Aug;20(2):105–121. doi: 10.1016/s0143-4160(96)90100-1. [DOI] [PubMed] [Google Scholar]
  19. Rebecchi M. J., Pentyala S. N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000 Oct;80(4):1291–1335. doi: 10.1152/physrev.2000.80.4.1291. [DOI] [PubMed] [Google Scholar]
  20. Stauffer T. P., Ahn S., Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol. 1998 Mar 12;8(6):343–346. doi: 10.1016/s0960-9822(98)70135-6. [DOI] [PubMed] [Google Scholar]
  21. Taylor C. W. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):19–33. doi: 10.1016/s0005-2760(98)00122-2. [DOI] [PubMed] [Google Scholar]
  22. Thomas D., Lipp P., Tovey S. C., Berridge M. J., Li W., Tsien R. Y., Bootman M. D. Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr Biol. 2000 Jan 13;10(1):8–15. doi: 10.1016/s0960-9822(99)00258-4. [DOI] [PubMed] [Google Scholar]
  23. Várnai P., Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol. 1998 Oct 19;143(2):501–510. doi: 10.1083/jcb.143.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Willars G. B., Challiss R. A., Stuart J. A., Nahorski S. R. Contrasting effects of phorbol ester and agonist-mediated activation of protein kinase C on phosphoinositide and Ca2+ signalling in a human neuroblastoma. Biochem J. 1996 Jun 15;316(Pt 3):905–913. doi: 10.1042/bj3160905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Willars G. B., Nahorski S. R., Challiss R. A. Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem. 1998 Feb 27;273(9):5037–5046. doi: 10.1074/jbc.273.9.5037. [DOI] [PubMed] [Google Scholar]
  26. Willars G. B., Nahorski S. R. Quantitative comparisons of muscarinic and bradykinin receptor-mediated Ins (1,4,5)P3 accumulation and Ca2+ signalling in human neuroblastoma cells. Br J Pharmacol. 1995 Mar;114(6):1133–1142. doi: 10.1111/j.1476-5381.1995.tb13325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wojcikiewicz R. J., Tobin A. B., Nahorski S. R. Muscarinic receptor-mediated inositol 1,4,5-trisphosphate formation in SH-SY5Y neuroblastoma cells is regulated acutely by cytosolic Ca2+ and by rapid desensitization. J Neurochem. 1994 Jul;63(1):177–185. doi: 10.1046/j.1471-4159.1994.63010177.x. [DOI] [PubMed] [Google Scholar]
  28. Young K. W., Pinnock R. D., Nahorski S. R. Determination of the inositol (1,4,5) trisphosphate requirement for histamine- and substance P-induced Ca2+ mobilisation in human U373 MG astrocytoma cells. Cell Calcium. 1998 Jul;24(1):59–70. doi: 10.1016/s0143-4160(98)90089-6. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia adjunct for Figure 1
bj3560137add01.gif (1.7MB, gif)
Multimedia adjunct for Figure 4
bj3560137add04.gif (1.6MB, gif)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES