Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):151–158. doi: 10.1042/0264-6021:3560151

Molten-globule structure and membrane binding of the N-terminal protease-resistant domain (63-193) of the steroidogenic acute regulatory protein (StAR).

M Song 1, H Shao 1, A Mujeeb 1, T L James 1, W L Miller 1
PMCID: PMC1221823  PMID: 11336647

Abstract

The first step in steroidogenesis is the movement of cholesterol from the outer to inner mitochondrial membrane; this movement is facilitated by the steroidogenic acute regulatory protein (StAR). StAR has molten-globule properties at low pH and a protease-resistant N-terminal domain at pH 4 and pH 8 comprising residues 63-193. To explore the mechanism of action of StAR we investigated the structural properties of the bacterially expressed N-terminal domain (63-193 StAR) using CD, limited proteolysis and NMR. Far- and near-UV CD showed that the amount of secondary structure was greater at acidic than at neutral pH, but there was little tertiary structure at any pH. Unlike 63-193 StAR liberated from N-62 StAR by proteolysis, biosynthetic 63-193 StAR was no longer resistant to trypsin or proteinase K at pH 7, or to pepsin at pH 4. Addition of trifluoroethanol and SDS increased secondary structure at pH 7, and dodecylphosphocholine and CHAPS increased secondary structure at pH 2, pH 4 and pH 7. However, none of these conditions induced tertiary structure, as monitored by near-UV CD or NMR. Liposomes of phosphatidylcholine, phosphatidylserine and their mixture increased secondary structure of 63-193 StAR at pH 7, as monitored by far-UV CD, and stable protein-liposome complexes were identified by gel-permeation chromatography. These results provide further evidence that the N-terminal domain of StAR is a molten globule, and provide evidence that this conformation facilitates the interaction of the N-terminal domain of StAR with membranes. We suggest that this interaction is the key to understanding the mechanism of StAR's action.

Full Text

The Full Text of this article is available as a PDF (187.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn T., Kim H. SecA of Escherichia coli traverses lipid bilayer of phospholipid vesicles. Biochem Biophys Res Commun. 1994 Aug 30;203(1):326–330. doi: 10.1006/bbrc.1994.2185. [DOI] [PubMed] [Google Scholar]
  2. Anglister J., Grzesiek S., Wang A. C., Ren H., Klee C. B., Bax A. 1H, 13C, 15N nuclear magnetic resonance backbone assignments and secondary structure of human calcineurin B. Biochemistry. 1994 Mar 29;33(12):3540–3547. doi: 10.1021/bi00178a010. [DOI] [PubMed] [Google Scholar]
  3. Arakane F., Kallen C. B., Watari H., Foster J. A., Sepuri N. B., Pain D., Stayrook S. E., Lewis M., Gerton G. L., Strauss J. F., 3rd The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J Biol Chem. 1998 Jun 26;273(26):16339–16345. doi: 10.1074/jbc.273.26.16339. [DOI] [PubMed] [Google Scholar]
  4. Arakane F., Sugawara T., Nishino H., Liu Z., Holt J. A., Pain D., Stocco D. M., Miller W. L., Strauss J. F., 3rd Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13731–13736. doi: 10.1073/pnas.93.24.13731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bañuelos S., Muga A. Binding of molten globule-like conformations to lipid bilayers. Structure of native and partially folded alpha-lactalbumin bound to model membranes. J Biol Chem. 1995 Dec 15;270(50):29910–29915. doi: 10.1074/jbc.270.50.29910. [DOI] [PubMed] [Google Scholar]
  6. Bose H. S., Baldwin M. A., Miller W. L. Incorrect folding of steroidogenic acute regulatory protein (StAR) in congenital lipoid adrenal hyperplasia. Biochemistry. 1998 Jul 7;37(27):9768–9775. doi: 10.1021/bi980588a. [DOI] [PubMed] [Google Scholar]
  7. Bose H. S., Sugawara T., Strauss J. F., 3rd, Miller W. L., International Congenital Lipoid Adrenal Hyperplasia Consortium The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996 Dec 19;335(25):1870–1878. doi: 10.1056/NEJM199612193352503. [DOI] [PubMed] [Google Scholar]
  8. Bose H. S., Whittal R. M., Baldwin M. A., Miller W. L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7250–7255. doi: 10.1073/pnas.96.13.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bose H. S., Whittal R. M., Huang M. C., Baldwin M. A., Miller W. L. N-218 MLN64, a protein with StAR-like steroidogenic activity, is folded and cleaved similarly to StAR. Biochemistry. 2000 Sep 26;39(38):11722–11731. doi: 10.1021/bi000911l. [DOI] [PubMed] [Google Scholar]
  10. Chaloin L., Vidal P., Heitz A., Van Mau N., Méry J., Divita G., Heitz F. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry. 1997 Sep 16;36(37):11179–11187. doi: 10.1021/bi9708491. [DOI] [PubMed] [Google Scholar]
  11. De Bernardez Clark E., Schwarz E., Rudolph R. Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 1999;309:217–236. doi: 10.1016/s0076-6879(99)09017-5. [DOI] [PubMed] [Google Scholar]
  12. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  13. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
  14. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  15. Gregory R. B., Dinh A., Rosenberg A. The effect of tri-N-acetylglucosamine on hydrogen exchange in hen egg white lysozyme. J Biol Chem. 1986 Oct 25;261(30):13963–13968. [PubMed] [Google Scholar]
  16. Henry G. D., Sykes B. D. Methods to study membrane protein structure in solution. Methods Enzymol. 1994;239:515–535. doi: 10.1016/s0076-6879(94)39020-7. [DOI] [PubMed] [Google Scholar]
  17. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  18. Johnson W. C., Jr Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem. 1988;17:145–166. doi: 10.1146/annurev.bb.17.060188.001045. [DOI] [PubMed] [Google Scholar]
  19. Kallen C. B., Billheimer J. T., Summers S. A., Stayrook S. E., Lewis M., Strauss J. F., 3rd Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J Biol Chem. 1998 Oct 9;273(41):26285–26288. doi: 10.1074/jbc.273.41.26285. [DOI] [PubMed] [Google Scholar]
  20. Kim J., Kim H. Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH. Biochemistry. 1986 Dec 2;25(24):7867–7874. doi: 10.1021/bi00372a012. [DOI] [PubMed] [Google Scholar]
  21. Kim J., Kim H. Penetration and fusion of phospholipid vesicles by lysozyme. Arch Biochem Biophys. 1989 Oct;274(1):100–108. doi: 10.1016/0003-9861(89)90420-7. [DOI] [PubMed] [Google Scholar]
  22. King S. R., Liu Z., Soh J., Eimerl S., Orly J., Stocco D. M. Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) protein. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):143–154. doi: 10.1016/s0960-0760(98)00152-6. [DOI] [PubMed] [Google Scholar]
  23. Kuwajima K., Nitta K., Sugai S. Electrophoretic investigations of the acid conformational change of alpha-lactalbumin. J Biochem. 1975 Jul;78(1):205–211. [PubMed] [Google Scholar]
  24. Lin D., Sugawara T., Strauss J. F., 3rd, Clark B. J., Stocco D. M., Saenger P., Rogol A., Miller W. L. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995 Mar 24;267(5205):1828–1831. doi: 10.1126/science.7892608. [DOI] [PubMed] [Google Scholar]
  25. Lohner K., Esser A. F. Thermal unfolding and aggregation of human complement protein C9: a differential scanning calorimetry study. Biochemistry. 1991 Jul 2;30(26):6620–6625. doi: 10.1021/bi00240a035. [DOI] [PubMed] [Google Scholar]
  26. London E. Diphtheria toxin: membrane interaction and membrane translocation. Biochim Biophys Acta. 1992 Mar 26;1113(1):25–51. doi: 10.1016/0304-4157(92)90033-7. [DOI] [PubMed] [Google Scholar]
  27. Miller W. L. Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J Mol Endocrinol. 1997 Dec;19(3):227–240. doi: 10.1677/jme.0.0190227. [DOI] [PubMed] [Google Scholar]
  28. Miller W. L. Molecular biology of steroid hormone synthesis. Endocr Rev. 1988 Aug;9(3):295–318. doi: 10.1210/edrv-9-3-295. [DOI] [PubMed] [Google Scholar]
  29. Moog-Lutz C., Tomasetto C., Régnier C. H., Wendling C., Lutz Y., Muller D., Chenard M. P., Basset P., Rio M. C. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer. 1997 Apr 10;71(2):183–191. doi: 10.1002/(sici)1097-0215(19970410)71:2<183::aid-ijc10>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  30. Muga A., Gonzalez-Manas J. M., Lakey J. H., Pattus F., Surewicz W. K. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem. 1993 Jan 25;268(3):1553–1557. [PubMed] [Google Scholar]
  31. Nakae J., Tajima T., Sugawara T., Arakane F., Hanaki K., Hotsubo T., Igarashi N., Igarashi Y., Ishii T., Koda N. Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Hum Mol Genet. 1997 Apr;6(4):571–576. doi: 10.1093/hmg/6.4.571. [DOI] [PubMed] [Google Scholar]
  32. Oh D. B., Yi G. S., Chi S. W., Kim H. Structure of a methionine-rich segment of Escherichia coli Ffh protein. FEBS Lett. 1996 Oct 21;395(2-3):160–164. doi: 10.1016/0014-5793(96)01019-8. [DOI] [PubMed] [Google Scholar]
  33. Ptitsyn O. B. How the molten globule became. Trends Biochem Sci. 1995 Sep;20(9):376–379. doi: 10.1016/s0968-0004(00)89081-7. [DOI] [PubMed] [Google Scholar]
  34. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  35. Rietveld A., de Kruijff B. Is the mitochondrial precursor protein apocytochrome c able to pass a lipid barrier? J Biol Chem. 1984 Jun 10;259(11):6704–6707. [PubMed] [Google Scholar]
  36. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  37. Song M., Kim H. Stability and solvent accessibility of SecA protein of Escherichia coli. J Biochem. 1997 Nov;122(5):1010–1018. doi: 10.1093/oxfordjournals.jbchem.a021840. [DOI] [PubMed] [Google Scholar]
  38. Stocco D. M., Clark B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996 Jun;17(3):221–244. doi: 10.1210/edrv-17-3-221. [DOI] [PubMed] [Google Scholar]
  39. Stoffel W., Schiefer H. G. Biosynthesis and composition of phosphatides in outer and inner mitochondrial membranes. Hoppe Seylers Z Physiol Chem. 1968 Aug;349(8):1017–1026. doi: 10.1515/bchm2.1968.349.2.1017. [DOI] [PubMed] [Google Scholar]
  40. Sugawara T., Holt J. A., Driscoll D., Strauss J. F., 3rd, Lin D., Miller W. L., Patterson D., Clancy K. P., Hart I. M., Clark B. J. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4778–4782. doi: 10.1073/pnas.92.11.4778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tsujishita Y., Hurley J. H. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000 May;7(5):408–414. doi: 10.1038/75192. [DOI] [PubMed] [Google Scholar]
  42. Wang X., Liu Z., Eimerl S., Timberg R., Weiss A. M., Orly J., Stocco D. M. Effect of truncated forms of the steroidogenic acute regulatory protein on intramitochondrial cholesterol transfer. Endocrinology. 1998 Sep;139(9):3903–3912. doi: 10.1210/endo.139.9.6204. [DOI] [PubMed] [Google Scholar]
  43. Watari H., Arakane F., Moog-Lutz C., Kallen C. B., Tomasetto C., Gerton G. L., Rio M. C., Baker M. E., Strauss J. F., 3rd MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8462–8467. doi: 10.1073/pnas.94.16.8462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES