Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):159–170. doi: 10.1042/0264-6021:3560159

Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes.

H Dircksen 1, D Böcking 1, U Heyn 1, C Mandel 1, J S Chung 1, G Baggerman 1, P Verhaert 1, S Daufeldt 1, T Plösch 1, P P Jaros 1, E Waelkens 1, R Keller 1, S G Webster 1
PMCID: PMC1221824  PMID: 11336648

Abstract

About 24 intrinsic neurosecretory neurons within the pericardial organs (POs) of the crab Carcinus maenas produce a novel crustacean hyperglycaemic hormone (CHH)-like peptide (PO-CHH) and two CHH-precursor-related peptides (PO-CPRP I and II) as identified immunochemically and by peptide chemistry. Edman sequencing and MS revealed PO-CHH as a 73 amino acid peptide (8630 Da) with a free C-terminus. PO-CHH and sinus gland CHH (SG-CHH) share an identical N-terminal sequence, positions 1-40, but the remaining sequence, positions 41-73 or 41-72, differs considerably. PO-CHH may have different precursors, as cDNA cloning of PO-derived mRNAs has revealed several similar forms, one exactly encoding the peptide. All PO-CHH cDNAs contain a nucleotide stretch coding for the SG-CHH(41-76) sequence in the 3'-untranslated region (UTR). Cloning of crab testis genomic DNA revealed at least four CHH genes, the structure of which suggest that PO-CHH and SG-CHH arise by alternative splicing of precursors and possibly post-transcriptional modification of PO-CHH. The genes encode four exons, separated by three variable introns, encoding part of a signal peptide (exon I), the remaining signal peptide residues, a CPRP, the PO-CHH(1-40)/SG-CHH(1-40) sequences (exon II), the remaining PO-CHH residues (exon III) and the remaining SG-CHH residues and a 3'-UTR (exon IV). Precursor and gene structures are more closely related to those encoding related insect ion-transport peptides than to penaeid shrimp CHH genes. PO-CHH neither exhibits hyperglycaemic activity in vivo, nor does it inhibit Y-organ ecdysteroid synthesis in vitro. From the morphology of the neurons it seems likely that novel functions remain to be discovered.

Full Text

The Full Text of this article is available as a PDF (339.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baghdassarian D., de Bessé N., Saïdi B., Sommé G., Lachaise F. Neuropeptide-induced inhibition of steroidogenesis in crab molting glands: involvement of cGMP-dependent protein kinase. Gen Comp Endocrinol. 1996 Oct;104(1):41–51. doi: 10.1006/gcen.1996.0139. [DOI] [PubMed] [Google Scholar]
  2. Chan S. M., Chen X. G., Gu P. L. PCR cloning and expression of the molt-inhibiting hormone gene for the crab (Charybdis feriatus). Gene. 1998 Dec 11;224(1-2):23–33. doi: 10.1016/s0378-1119(98)00517-4. [DOI] [PubMed] [Google Scholar]
  3. Chang E. S., Chang S. A., Beltz B. S., Kravitz E. A. Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. J Comp Neurol. 1999 Nov 8;414(1):50–56. [PubMed] [Google Scholar]
  4. Chang E. S., Keller R., Chang S. A. Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocrinol. 1998 Sep;111(3):359–366. doi: 10.1006/gcen.1998.7120. [DOI] [PubMed] [Google Scholar]
  5. Chung J. S., Dircksen H., Webster S. G. A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13103–13107. doi: 10.1073/pnas.96.23.13103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chung J. S., Webster S. G. Does the N-terminal pyroglutamate residue have any physiological significance for crab hyperglycemic neuropeptides? Eur J Biochem. 1996 Sep 1;240(2):358–364. doi: 10.1111/j.1432-1033.1996.0358h.x. [DOI] [PubMed] [Google Scholar]
  7. Davey ML, Hall MR, Willis RH, Oliver RW, Thurn MJ, Wilson KJ. Five Crustacean Hyperglycemic Family Hormones of Penaeus monodon: Complementary DNA Sequence and Identification in Single Sinus Glands by Electrospray Ionization-Fourier Transform Mass Spectrometry. Mar Biotechnol (NY) 2000 Jan;2(1):80–91. doi: 10.1007/s101269900011. [DOI] [PubMed] [Google Scholar]
  8. De Kleijn D. P., Janssen K. P., Martens G. J., Van Herp F. Cloning and expression of two crustacean hyperglycemic-hormone mRNAs in the eyestalk of the crayfish Orconectes limosus. Eur J Biochem. 1994 Sep 1;224(2):623–629. doi: 10.1111/j.1432-1033.1994.00623.x. [DOI] [PubMed] [Google Scholar]
  9. De Kleijn D. P., Van Herp F. Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comp Biochem Physiol B Biochem Mol Biol. 1995 Dec;112(4):573–579. doi: 10.1016/0305-0491(95)00126-3. [DOI] [PubMed] [Google Scholar]
  10. Endo H., Nagasawa H., Watanabe T. Isolation of a cDNA encoding a CHH-family peptide from the silkworm Bombyx mori. Insect Biochem Mol Biol. 2000 May;30(5):355–361. doi: 10.1016/s0965-1748(99)00129-0. [DOI] [PubMed] [Google Scholar]
  11. Gu P. L., Chan S. M. Cloning of a cDNA encoding a putative molt-inhibiting hormone from the eyestalk of the sand shrimp Metapenaeus ensis. Mol Mar Biol Biotechnol. 1998 Sep;7(3):214–220. [PubMed] [Google Scholar]
  12. Gu P. L., Chan S. M. The shrimp hyperglycemic hormone-like neuropeptide is encoded by multiple copies of genes arranged in a cluster. FEBS Lett. 1998 Dec 28;441(3):397–403. doi: 10.1016/s0014-5793(98)01573-7. [DOI] [PubMed] [Google Scholar]
  13. Gu P. L., Yu K. L., Chan S. M. Molecular characterization of an additional shrimp hyperglycemic hormone: cDNA cloning, gene organization, expression and biological assay of recombinant proteins. FEBS Lett. 2000 Apr 21;472(1):122–128. doi: 10.1016/s0014-5793(00)01420-4. [DOI] [PubMed] [Google Scholar]
  14. Kegel G., Reichwein B., Weese S., Gaus G., Peter-Katalinić J., Keller R. Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett. 1989 Sep 11;255(1):10–14. doi: 10.1016/0014-5793(89)81051-8. [DOI] [PubMed] [Google Scholar]
  15. Lu W., Wainwright G., Webster S. G., Rees H. H., Turner P. C. Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression. Gene. 2000 Aug 8;253(2):197–207. doi: 10.1016/s0378-1119(00)00282-1. [DOI] [PubMed] [Google Scholar]
  16. MAYNARD D. M. Thoracic neurosecretory structures in brachyura. II. Secretory neurons. Gen Comp Endocrinol. 1961 Sep;1:237–263. doi: 10.1016/0016-6480(61)90033-8. [DOI] [PubMed] [Google Scholar]
  17. Macins A., Meredith J., Zhao Y., Brock H. W., Phillips J. E. Occurrence of ion transport peptide (ITP) and ion transport-like peptide (ITP-L) in orthopteroids. Arch Insect Biochem Physiol. 1999;40(2):107–118. doi: 10.1002/(SICI)1520-6327(1999)40:2<107::AID-ARCH5>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  18. Meredith J., Ring M., Macins A., Marschall J., Cheng N. N., Theilmann D., Brock H. W., Phillips J. E. Locust ion transport peptide (ITP): primary structure, cDNA and expression in a baculovirus system. J Exp Biol. 1996 May;199(Pt 5):1053–1061. doi: 10.1242/jeb.199.5.1053. [DOI] [PubMed] [Google Scholar]
  19. Ohira T., Watanabe T., Nagasawa H., Aida K. Cloning and sequence analysis of a cDNA encoding a crustacean hyperglycemic hormone from the Kuruma prawn Penaeus japonicus. Mol Mar Biol Biotechnol. 1997 Mar;6(1):59–63. [PubMed] [Google Scholar]
  20. Phlippen M. K., Webster S. G., Chung J. S., Dircksen H. Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. J Exp Biol. 2000 Feb;203(Pt 3):521–536. doi: 10.1242/jeb.203.3.521. [DOI] [PubMed] [Google Scholar]
  21. Schielen W. J., Voskuilen M., Tesser G. I., Nieuwenhuizen W. The sequence A alpha-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8951–8954. doi: 10.1073/pnas.86.22.8951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spanings-Pierrot C., Soyez D., Van Herp F., Gompel M., Skaret G., Grousset E., Charmantier G. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen Comp Endocrinol. 2000 Sep;119(3):340–350. doi: 10.1006/gcen.2000.7527. [DOI] [PubMed] [Google Scholar]
  23. Stefanini M., De Martino C., Zamboni L. Fixation of ejaculated spermatozoa for electron microscopy. Nature. 1967 Oct 14;216(5111):173–174. doi: 10.1038/216173a0. [DOI] [PubMed] [Google Scholar]
  24. Tang C., Lu W., Wainwright G., Webster S. G., Rees H. H., Turner P. C. Molecular characterization and expression of mandibular organ-inhibiting hormone, a recently discovered neuropeptide involved in the regulation of growth and reproduction in the crab Cancer pagurus. Biochem J. 1999 Oct 15;343(Pt 2):355–360. [PMC free article] [PubMed] [Google Scholar]
  25. Tensen C. P., Verhoeven A. H., Gaus G., Janssen K. P., Keller R., Van Herp F. Isolation and amino acid sequence of crustacean hyperglycemic hormone precursor-related peptides. Peptides. 1991 Jul-Aug;12(4):673–681. doi: 10.1016/0196-9781(91)90119-a. [DOI] [PubMed] [Google Scholar]
  26. Veelaert D., Baggerman G., Derua R., Waelkens E., Meeusen T., Vande Water G., De Loof A., Schoofs L. Identification of a new tachykinin from the midgut of the desert locust, Schistocerca gregaria, by ESI-Qq-oa-TOF mass spectrometry. Biochem Biophys Res Commun. 1999 Dec 9;266(1):237–242. doi: 10.1006/bbrc.1999.1808. [DOI] [PubMed] [Google Scholar]
  27. Webster S. G. Amino acid sequence of putative moult-inhibiting hormone from the crab Carcinus maenas. Proc Biol Sci. 1991 Jun 22;244(1311):247–252. doi: 10.1098/rspb.1991.0078. [DOI] [PubMed] [Google Scholar]
  28. Webster S. G. Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterization of the putative molt-inhibiting hormone (MIH). Gen Comp Endocrinol. 1986 Feb;61(2):237–247. doi: 10.1016/0016-6480(86)90201-7. [DOI] [PubMed] [Google Scholar]
  29. Weidemann W., Gromoll J., Keller R. Cloning and sequence analysis of cDNA for precursor of a crustacean hyperglycemic hormone. FEBS Lett. 1989 Oct 23;257(1):31–34. doi: 10.1016/0014-5793(89)81778-8. [DOI] [PubMed] [Google Scholar]
  30. Yang W. J., Aida K., Terauchi A., Sonobe H., Nagasawa H. Amino acid sequence of a peptide with molt-inhibiting activity from the kuruma prawn Penaeus japonicus. Peptides. 1996;17(2):197–202. doi: 10.1016/0196-9781(95)02122-1. [DOI] [PubMed] [Google Scholar]
  31. Zhang Q., Keller R., Dircksen H. Crustacean hyperglycaemic hormone in the nervous system of the primitive crustacean species Daphnia magna and Artemia salina (Crustacea: Branchiopoda). Cell Tissue Res. 1997 Feb;287(3):565–576. doi: 10.1007/s004410050779. [DOI] [PubMed] [Google Scholar]
  32. de Kleijn D. P., de Leeuw E. P., van den Berg M. C., Martens G. J., van Herp F. Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus. Biochim Biophys Acta. 1995 Jan 2;1260(1):62–66. doi: 10.1016/0167-4781(94)00173-z. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES