Abstract
The Kell blood-group antigen was originally reported to be a protein expressed in erythroid tissue only. Transcriptional analysis of the KEL promoter activity in human erythroleukaemia K562 and epithelial HeLa cells by electrophoretic mobility-shift and supershift assays, chloramphenicol acetyltransferase assays, co-transfection studies and site-directed mutagenesis provided the following results: (i) the KEL promoter exhibits a strong transcriptional activity in K562 cells and, unexpectedly, a basal non-erythroid activity in HeLa cells, (ii) up-regulation of the 5' distal promoter activity occurs only in the erythroid context, and (iii) two motifs localized in the exon 1 region, which bind the Sp1/Sp3 and the human GATA-1/Ku70/80 factors, were required for down-regulation of the promoter activity, but inhibition of the promoter activity by the repressing factors in HeLa cells was incomplete. KEL expression in HeLa cells was performed further by primer-extension analysis, which revealed the presence of a low amount of Kell transcript correlating with basal expression of the Kell protein in these cells, as shown by immunopurification and Western-blot analysis. DNA sequencing of the transcript revealed a sequence identical to that obtained from erythroid tissue. In human tissues, KEL expression was investigated by dot-blot analysis and revealed high levels of Kell mRNAs, particularly in brain tissues, testis and lymphoid tissues. Moreover, most tissues analysed exhibited low levels of Kell transcripts. The Kell protein was also detected by immunohistochemistry in the Sertoli cells of the testis and in lymphoid tissues like spleen and tonsil, specifically localized in the follicular dendritic cells. Altogether, the results indicated that KEL expression is not restricted to erythroid tissue.
Full Text
The Full Text of this article is available as a PDF (360.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Andersson L. C., Jokinen M., Gahmberg C. G. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature. 1979 Mar 22;278(5702):364–365. doi: 10.1038/278364a0. [DOI] [PubMed] [Google Scholar]
- Andrews N. C., Faller D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bony V., Gane P., Bailly P., Cartron J. P. Time-course expression of polypeptides carrying blood group antigens during human erythroid differentiation. Br J Haematol. 1999 Nov;107(2):263–274. doi: 10.1046/j.1365-2141.1999.01721.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Camara-Clayette V., Rahuel C., Bertrand O., Cartron J. P. The E-box of the human glycophorin B promoter is involved in the erythroid-specific expression of the GPB gene. Biochem Biophys Res Commun. 1999 Nov;265(1):170–176. doi: 10.1006/bbrc.1999.1634. [DOI] [PubMed] [Google Scholar]
- Camara-Clayette V., Thomas D., Rahuel C., Barbey R., Cartron J. P., Bertrand O. The repressor which binds the -75 GATA motif of the GPB promoter contains Ku70 as the DNA binding subunit. Nucleic Acids Res. 1999 Apr 1;27(7):1656–1663. doi: 10.1093/nar/27.7.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartron J. P., Bailly P., Le Van Kim C., Cherif-Zahar B., Matassi G., Bertrand O., Colin Y. Insights into the structure and function of membrane polypeptides carrying blood group antigens. Vox Sang. 1998;74 (Suppl 2):29–64. doi: 10.1111/j.1423-0410.1998.tb05397.x. [DOI] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaber A., Loirat M. J., Willem C., Bloy C., Cartron J. P., Blanchard D. Characterization of murine monoclonal antibodies directed against the Kell blood group glycoprotein. Br J Haematol. 1991 Oct;79(2):311–315. doi: 10.1111/j.1365-2141.1991.tb04539.x. [DOI] [PubMed] [Google Scholar]
- Kennett S. B., Udvadia A. J., Horowitz J. M. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res. 1997 Aug 1;25(15):3110–3117. doi: 10.1093/nar/25.15.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khamlichi S., Bailly P., Blanchard D., Goossens D., Cartron J. P., Bertrand O. Purification and partial characterization of the erythrocyte Kx protein deficient in McLeod patients. Eur J Biochem. 1995 Mar 15;228(3):931–934. [PubMed] [Google Scholar]
- Kriwacki R. W., Schultz S. C., Steitz T. A., Caradonna J. P. Sequence-specific recognition of DNA by zinc-finger peptides derived from the transcription factor Sp1. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9759–9763. doi: 10.1073/pnas.89.20.9759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee S., Lin M., Mele A., Cao Y., Farmar J., Russo D., Redman C. Proteolytic processing of big endothelin-3 by the kell blood group protein. Blood. 1999 Aug 15;94(4):1440–1450. [PubMed] [Google Scholar]
- Lee S., Zambas E. D., Marsh W. L., Redman C. M. Molecular cloning and primary structure of Kell blood group protein. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6353–6357. doi: 10.1073/pnas.88.14.6353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S., Zambas E. D., Marsh W. L., Redman C. M. The human Kell blood group gene maps to chromosome 7q33 and its expression is restricted to erythroid cells. Blood. 1993 May 15;81(10):2804–2809. [PubMed] [Google Scholar]
- Lee S., Zambas E., Green E. D., Redman C. Organization of the gene encoding the human Kell blood group protein. Blood. 1995 Mar 1;85(5):1364–1370. [PubMed] [Google Scholar]
- Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majello B., De Luca P., Hagen G., Suske G., Lania L. Different members of the Sp1 multigene family exert opposite transcriptional regulation of the long terminal repeat of HIV-1. Nucleic Acids Res. 1994 Nov 25;22(23):4914–4921. doi: 10.1093/nar/22.23.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majello B., De Luca P., Lania L. Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem. 1997 Feb 14;272(7):4021–4026. doi: 10.1074/jbc.272.7.4021. [DOI] [PubMed] [Google Scholar]
- Rahuel C., Vignal A., London J., Hamel S., Roméo P. H., Colin Y., Cartron J. P. Structure of the 5' flanking region of the gene encoding human glycophorin A and analysis of its multiple transcripts. Gene. 1989 Dec 28;85(2):471–477. doi: 10.1016/0378-1119(89)90441-1. [DOI] [PubMed] [Google Scholar]
- Rahuel C., Vinit M. A., Lemarchandel V., Cartron J. P., Roméo P. H. Erythroid-specific activity of the glycophorin B promoter requires GATA-1 mediated displacement of a repressor. EMBO J. 1992 Nov;11(11):4095–4102. doi: 10.1002/j.1460-2075.1992.tb05502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russo D., Redman C., Lee S. Association of XK and Kell blood group proteins. J Biol Chem. 1998 May 29;273(22):13950–13956. doi: 10.1074/jbc.273.22.13950. [DOI] [PubMed] [Google Scholar]
- Russo D., Wu X., Redman C. M., Lee S. Expression of Kell blood group protein in nonerythroid tissues. Blood. 2000 Jul 1;96(1):340–346. [PubMed] [Google Scholar]
- Southcott M. J., Tanner M. J., Anstee D. J. The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood. 1999 Jun 15;93(12):4425–4435. [PubMed] [Google Scholar]
- Telen M. J. Erythrocyte blood group antigens: not so simple after all. Blood. 1995 Jan 15;85(2):299–306. [PubMed] [Google Scholar]
- Vaughan J. I., Manning M., Warwick R. M., Letsky E. A., Murray N. A., Roberts I. A. Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med. 1998 Mar 19;338(12):798–803. doi: 10.1056/NEJM199803193381204. [DOI] [PubMed] [Google Scholar]
- Wagner T., Berer A., Lanzer G., Geissler K. Kell is not restricted to the erythropoietic lineage but is also expressed on myeloid progenitor cells. Br J Haematol. 2000 Aug;110(2):409–411. doi: 10.1046/j.1365-2141.2000.02195.x. [DOI] [PubMed] [Google Scholar]
- Wagner T., Bernaschek G., Geissler K. Inhibition of megakaryopoiesis by Kell-related antibodies. N Engl J Med. 2000 Jul 6;343(1):72–72. doi: 10.1056/NEJM200007063430120. [DOI] [PubMed] [Google Scholar]
- Weiner C. P., Widness J. A. Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am J Obstet Gynecol. 1996 Feb;174(2):547–551. doi: 10.1016/s0002-9378(96)70425-8. [DOI] [PubMed] [Google Scholar]
- Xiao J. H., Davidson I., Macchi M., Rosales R., Vigneron M., Staub A., Chambon P. In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. Genes Dev. 1987 Oct;1(8):794–807. doi: 10.1101/gad.1.8.794. [DOI] [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]