Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):217–222. doi: 10.1042/0264-6021:3560217

Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants.

R Franco 1, A S Pereira 1, P Tavares 1, A Mangravita 1, M J Barber 1, I Moura 1, G C Ferreira 1
PMCID: PMC1221830  PMID: 11336654

Abstract

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q variants demonstrate that reaction with Zn(2+) results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical for the catalytic process by controlling the release of the product.

Full Text

The Full Text of this article is available as a PDF (145.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Karadaghi S., Hansson M., Nikonov S., Jönsson B., Hederstedt L. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure. 1997 Nov 15;5(11):1501–1510. doi: 10.1016/s0969-2126(97)00299-2. [DOI] [PubMed] [Google Scholar]
  2. Blackwood M. E., Jr, Rush T. S., 3rd, Romesberg F., Schultz P. G., Spiro T. G. Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions. Biochemistry. 1998 Jan 20;37(3):779–782. doi: 10.1021/bi972616f. [DOI] [PubMed] [Google Scholar]
  3. Brenner D. A., Didier J. M., Frasier F., Christensen S. R., Evans G. A., Dailey H. A. A molecular defect in human protoporphyria. Am J Hum Genet. 1992 Jun;50(6):1203–1210. [PMC free article] [PubMed] [Google Scholar]
  4. DURBIN J., WATSON G. S. Testing for serial correlation in least squares regression. I. Biometrika. 1950 Dec;37(3-4):409–428. [PubMed] [Google Scholar]
  5. Dailey H. A., Finnegan M. G., Johnson M. K. Human ferrochelatase is an iron-sulfur protein. Biochemistry. 1994 Jan 18;33(2):403–407. doi: 10.1021/bi00168a003. [DOI] [PubMed] [Google Scholar]
  6. Day A. L., Parsons B. M., Dailey H. A. Cloning and characterization of Gallus and Xenopus ferrochelatases: presence of the [2Fe-2S] cluster in nonmammalian ferrochelatase. Arch Biochem Biophys. 1998 Nov 15;359(2):160–169. doi: 10.1006/abbi.1998.0910. [DOI] [PubMed] [Google Scholar]
  7. Ferreira G. C., Franco R., Lloyd S. G., Pereira A. S., Moura I., Moura J. J., Huynh B. H. Mammalian ferrochelatase, a new addition to the metalloenzyme family. J Biol Chem. 1994 Mar 11;269(10):7062–7065. [PubMed] [Google Scholar]
  8. Ferreira G. C. Mammalian ferrochelatase. Overexpression in Escherichia coli as a soluble protein, purification and characterization. J Biol Chem. 1994 Feb 11;269(6):4396–4400. [PubMed] [Google Scholar]
  9. Franco R., Ma J. G., Lu Y., Ferreira G. C., Shelnutt J. A. Porphyrin interactions with wild-type and mutant mouse ferrochelatase. Biochemistry. 2000 Mar 14;39(10):2517–2529. doi: 10.1021/bi991346t. [DOI] [PubMed] [Google Scholar]
  10. Franco R., Moura J. J., Moura I., Lloyd S. G., Huynh B. H., Forbes W. S., Ferreira G. C. Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mössbauer methods. J Biol Chem. 1995 Nov 3;270(44):26352–26357. doi: 10.1074/jbc.270.44.26352. [DOI] [PubMed] [Google Scholar]
  11. Gong J., Kay C. J., Barber M. J., Ferreira G. C. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis. Biochemistry. 1996 Nov 12;35(45):14109–14117. doi: 10.1021/bi961296h. [DOI] [PubMed] [Google Scholar]
  12. Gora M., Grzybowska E., Rytka J., Labbe-Bois R. Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses. J Biol Chem. 1996 May 17;271(20):11810–11816. doi: 10.1074/jbc.271.20.11810. [DOI] [PubMed] [Google Scholar]
  13. Guo R., Lim C. K., Peters T. J. High-performance liquid chromatographic assays for protoporphyrinogen oxidase and ferrochelatase in human leucocytes. J Chromatogr. 1991 May 31;566(2):383–396. doi: 10.1016/0378-4347(91)80255-b. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lecerof D., Fodje M., Hansson A., Hansson M., Al-Karadaghi S. Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J Mol Biol. 2000 Mar 17;297(1):221–232. doi: 10.1006/jmbi.2000.3569. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sellers V. M., Wang K. F., Johnson M. K., Dailey H. A. Evidence that the fourth ligand to the [2Fe-2S] cluster in animal ferrochelatase is a cysteine. Characterization of the enzyme from Drosophila melanogaster. J Biol Chem. 1998 Aug 28;273(35):22311–22316. doi: 10.1074/jbc.273.35.22311. [DOI] [PubMed] [Google Scholar]
  18. Siegel L. M., Murphy M. J., Kamin H. Siroheme: methods of isolation and characterization. Methods Enzymol. 1978;52:436–447. doi: 10.1016/s0076-6879(78)52048-x. [DOI] [PubMed] [Google Scholar]
  19. Wang K. F., Wu C. K., Sellers V. M., Rose J. P., Wang B. C., Dailey H. A. Purification, crystallization and preliminary X-ray analysis of Drosophila melanogaster ferrochelatase. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1201–1203. doi: 10.1107/s0907444999003595. [DOI] [PubMed] [Google Scholar]
  20. Whitcombe D. M., Carter N. P., Albertson D. G., Smith S. J., Rhodes D. A., Cox T. M. Assignment of the human ferrochelatase gene (FECH) and a locus for protoporphyria to chromosome 18q22. Genomics. 1991 Dec;11(4):1152–1154. doi: 10.1016/0888-7543(91)90044-f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES