Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):277–286. doi: 10.1042/0264-6021:3560277

Cation-dependent structural features of beta-casein-(1-25).

K J Cross 1, N L Huq 1, W Bicknell 1, E C Reynolds 1
PMCID: PMC1221837  PMID: 11336661

Abstract

Complete sequence-specific, proton-resonance assignments have been determined for the calcium phosphate-stabilizing tryptic peptide beta-casein-(1-25) containing the phosphorylated sequence motif Ser(P)(17)-Ser(P)-Ser(P)-Glu-Glu(21). Spectra of the peptide have been recorded, in separate experiments, in the presence of excess ammonium ions, sodium ions and calcium ions, and of the dephosphorylated peptide in the presence of excess sodium ions. We observed significant changes to chemical shifts for backbone and side-chain resonances that were dependent upon the nature of the cation present. Medium-range nuclear Overhauser effect (nOe) enhancements, characteristic of small structured regions in the peptide, were observed and also found to be cation dependent. The secondary structure of the peptide was characterized by sequential and medium-range (i, i+2/3/4, which denotes an interaction between residue i and residue i+2, i+3 or i+4 in the peptide) nOe connectivities, and Halpha chemical shifts. Four structured regions were identified in the calcium-bound peptide: residues Arg(1) to Glu(4) were involved in a loop-type structure, and residues Val(8) to Glu(11), Ser(P)(17) to Glu(20) and Glu(21) to Thr(24) were implicated in beta-turn conformations. Comparison of the patterns of medium-range nOe connectivities in beta-casein-(1-25) with those in alpha(S1)-casein-(59-79) suggest that the two peptides have distinctly different conformations in the presence of calcium ions, despite having a high degree of sequential and functional similarity.

Full Text

The Full Text of this article is available as a PDF (219.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson N., Riley P. F., Reynolds E. C. The analysis of multiple phosphoseryl-containing casein peptides using capillary zone electrophoresis. J Chromatogr. 1993 Sep 3;646(2):391–396. doi: 10.1016/0021-9673(93)83352-s. [DOI] [PubMed] [Google Scholar]
  2. Chaplin L. C., Clark D. C., Smith L. J. The secondary structure of peptides derived from caseins: a circular dichroism study. Biochim Biophys Acta. 1988 Sep 21;956(2):162–172. doi: 10.1016/0167-4838(88)90263-4. [DOI] [PubMed] [Google Scholar]
  3. Chazin W. J., Wright P. E. A modified strategy for identification of 1H spin systems in proteins. Biopolymers. 1987 Jun;26(6):973–977. doi: 10.1002/bip.360260615. [DOI] [PubMed] [Google Scholar]
  4. Cookson D. J., Levine B. A., Williams R. J., Jontell M., Linde A., de Bernard B. Cation binding by the rat-incisor-dentine phosphoprotein. A spectroscopic investigation. Eur J Biochem. 1980 Sep;110(1):273–278. doi: 10.1111/j.1432-1033.1980.tb04865.x. [DOI] [PubMed] [Google Scholar]
  5. Creamer L. K. Hydrogen ion equilibria of bovine -casein-B. Biochim Biophys Acta. 1972 Jul 21;271(2):252–261. doi: 10.1016/0005-2795(72)90198-5. [DOI] [PubMed] [Google Scholar]
  6. Curley D. M., Kumosinski T. F., Unruh J. J., Farrell H. M., Jr Changes in the secondary structure of bovine casein by Fourier transform infrared spectroscopy: effects of calcium and temperature. J Dairy Sci. 1998 Dec;81(12):3154–3162. doi: 10.3168/jds.S0022-0302(98)75881-3. [DOI] [PubMed] [Google Scholar]
  7. Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
  8. Humphrey R. S., Jolley K. W. 31P-NMR studies of bovine beta-casein. Biochim Biophys Acta. 1982 Nov 19;708(3):294–299. doi: 10.1016/0167-4838(82)90439-3. [DOI] [PubMed] [Google Scholar]
  9. Huq N. L., Cross K. J., Reynolds E. C. A 1H-NMR study of the casein phosphopeptide alpha s1-casein(59-79). Biochim Biophys Acta. 1995 Mar 15;1247(2):201–208. [PubMed] [Google Scholar]
  10. Huq N. L., Cross K. J., Talbo G. H., Riley P. F., Loganathan A., Crossley M. A., Perich J. W., Reynolds E. C. N-terminal sequence analysis of bovine dentin phosphophoryn after conversion of phosphoseryl to S-propylcysteinyl residues. J Dent Res. 2000 Nov;79(11):1914–1919. doi: 10.1177/00220345000790111701. [DOI] [PubMed] [Google Scholar]
  11. Kasai T., Iwasaki R., Tanaka M., Kiriyama S. Caseinphosphopeptides (CPP) in feces and contents in digestive tract of rats fed casein and CPP preparations. Biosci Biotechnol Biochem. 1995 Jan;59(1):26–30. doi: 10.1271/bbb.59.26. [DOI] [PubMed] [Google Scholar]
  12. Lee Y. S., Noguchi T., Naito H. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr. 1980 May;43(3):457–467. doi: 10.1079/bjn19800113. [DOI] [PubMed] [Google Scholar]
  13. Manson W., Annan W. D. The structure of a phosphopeptide derived from -casein. Arch Biochem Biophys. 1971 Jul;145(1):16–26. doi: 10.1016/0003-9861(71)90004-x. [DOI] [PubMed] [Google Scholar]
  14. Prescott B., Renugopalakrishnan V., Glimcher M. J., Bhushan A., Thomas G. J., Jr A Raman spectroscopic study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry. 1986 May 20;25(10):2792–2798. doi: 10.1021/bi00358a009. [DOI] [PubMed] [Google Scholar]
  15. REEVES R. E., LATOUR N. G. Calcium phosphate sequestering phosphopeptide from casein. Science. 1958 Aug 29;128(3322):472–472. doi: 10.1126/science.128.3322.472. [DOI] [PubMed] [Google Scholar]
  16. Reynolds E. C., Cain C. J., Webber F. L., Black C. L., Riley P. F., Johnson I. H., Perich J. W. Anticariogenicity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res. 1995 Jun;74(6):1272–1279. doi: 10.1177/00220345950740060601. [DOI] [PubMed] [Google Scholar]
  17. Reynolds E. C. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997 Sep;76(9):1587–1595. doi: 10.1177/00220345970760091101. [DOI] [PubMed] [Google Scholar]
  18. Reynolds E. C., Riley P. F., Adamson N. J. A selective precipitation purification procedure for multiple phosphoseryl-containing peptides and methods for their identification. Anal Biochem. 1994 Mar;217(2):277–284. doi: 10.1006/abio.1994.1119. [DOI] [PubMed] [Google Scholar]
  19. Reynolds E. C. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J Dent Res. 1987 Jun;66(6):1120–1127. doi: 10.1177/00220345870660060601. [DOI] [PubMed] [Google Scholar]
  20. Roach P. J. Multisite and hierarchal protein phosphorylation. J Biol Chem. 1991 Aug 5;266(22):14139–14142. [PubMed] [Google Scholar]
  21. Sato R., Noguchi T., Naito H. Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J Nutr Sci Vitaminol (Tokyo) 1986 Feb;32(1):67–76. doi: 10.3177/jnsv.32.67. [DOI] [PubMed] [Google Scholar]
  22. Wahlgren N. M., Dejmek P., Drakenberg T. Secondary structures in beta-casein peptide 1-42: a two dimensional nuclear magnetic resonance study. J Dairy Res. 1994 Nov;61(4):495–506. doi: 10.1017/s0022029900028429. [DOI] [PubMed] [Google Scholar]
  23. Wahlgren N. M., Léonil J., Dejmek P., Drakenberg T. Two-dimensional nuclear magnetic resonance study of the beta-casein peptide 1-25: resonance assignments and secondary structure. Biochim Biophys Acta. 1993 Sep 3;1202(1):121–128. doi: 10.1016/0167-4838(93)90072-y. [DOI] [PubMed] [Google Scholar]
  24. Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
  25. Wilmot C. M., Thornton J. M. Beta-turns and their distortions: a proposed new nomenclature. Protein Eng. 1990 May;3(6):479–493. doi: 10.1093/protein/3.6.479. [DOI] [PubMed] [Google Scholar]
  26. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES