Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):327–334. doi: 10.1042/0264-6021:3560327

Homology modelling and structural analysis of human arylamine N-acetyltransferase NAT1: evidence for the conservation of a cysteine protease catalytic domain and an active-site loop.

F Rodrigues-Lima 1, C Deloménie 1, G H Goodfellow 1, D M Grant 1, J M Dupret 1
PMCID: PMC1221842  PMID: 11368758

Abstract

Arylamine N-acetyltransferases (EC 2.3.1.5) (NATs) catalyse the biotransformation of many primary arylamines, hydrazines and their N-hydroxylated metabolites, thereby playing an important role in both the detoxification and metabolic activation of numerous xenobiotics. The recently published crystal structure of the Salmonella typhimurium NAT (StNAT) revealed the existence of a cysteine protease-like (Cys-His-Asp) catalytic triad. In the present study, a three-dimensional homology model of human NAT1, based upon the crystal structure of StNAT [Sinclair, Sandy, Delgoda, Sim and Noble (2000) Nat. Struct. Biol. 7, 560-564], is demonstrated. Alignment of StNAT and NAT1, together with secondary structure predictions, have defined a consensus region (residues 29-131) in which 37% of the residues are conserved. Homology modelling provided a good quality model of the corresponding region in human NAT1. The location of the catalytic triad was found to be identical in StNAT and NAT1. Comparison of active-site structural elements revealed that a similar length loop is conserved in both species (residues 122-131 in NAT1 model and residues 122-133 in StNAT). This observation may explain the involvement of residues 125, 127 and 129 in human NAT substrate selectivity. Our model, and the fact that cysteine protease inhibitors do not affect the activity of NAT1, suggests that human NATs may have adapted a common catalytic mechanism from cysteine proteases to accommodate it for acetyl-transfer reactions.

Full Text

The Full Text of this article is available as a PDF (302.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andres H. H., Klem A. J., Schopfer L. M., Harrison J. K., Weber W. W. On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J). J Biol Chem. 1988 Jun 5;263(16):7521–7527. [PubMed] [Google Scholar]
  3. Babbitt P. C., Gerlt J. A. Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities. J Biol Chem. 1997 Dec 5;272(49):30591–30594. doi: 10.1074/jbc.272.49.30591. [DOI] [PubMed] [Google Scholar]
  4. Blum M., Grant D. M., McBride W., Heim M., Meyer U. A. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990 Apr;9(3):193–203. doi: 10.1089/dna.1990.9.193. [DOI] [PubMed] [Google Scholar]
  5. Brömme D., Bonneau P. R., Purisima E., Lachance P., Hajnik S., Thomas D. Y., Storer A. C. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Biochemistry. 1996 Apr 2;35(13):3970–3979. doi: 10.1021/bi9523015. [DOI] [PubMed] [Google Scholar]
  6. Burley S. K. An overview of structural genomics. Nat Struct Biol. 2000 Nov;7 (Suppl):932–934. doi: 10.1038/80697. [DOI] [PubMed] [Google Scholar]
  7. Carrière F., Withers-Martinez C., van Tilbeurgh H., Roussel A., Cambillau C., Verger R. Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. Biochim Biophys Acta. 1998 Nov 10;1376(3):417–432. doi: 10.1016/s0304-4157(98)00016-1. [DOI] [PubMed] [Google Scholar]
  8. Deloménie C., Goodfellow G. H., Krishnamoorthy R., Grant D. M., Dupret J. M. Study of the role of the highly conserved residues Arg9 and Arg64 in the catalytic function of human N-acetyltransferases NAT1 and NAT2 by site-directed mutagenesis. Biochem J. 1997 Apr 1;323(Pt 1):207–215. doi: 10.1042/bj3230207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doll M. A., Hein D. W. Cloning, sequencing and expression of NAT1 and NAT2 encoding genes from rapid and slow acetylator inbred rats. Pharmacogenetics. 1995 Aug;5(4):247–251. doi: 10.1097/00008571-199508000-00009. [DOI] [PubMed] [Google Scholar]
  10. Dupret J. M., Goodfellow G. H., Janezic S. A., Grant D. M. Structure-function studies of human arylamine N-acetyltransferases NAT1 and NAT2. Functional analysis of recombinant NAT1/NAT2 chimeras expressed in Escherichia coli. J Biol Chem. 1994 Oct 28;269(43):26830–26835. [PubMed] [Google Scholar]
  11. Dupret J. M., Grant D. M. Site-directed mutagenesis of recombinant human arylamine N-acetyltransferase expressed in Escherichia coli. Evidence for direct involvement of Cys68 in the catalytic mechanism of polymorphic human NAT2. J Biol Chem. 1992 Apr 15;267(11):7381–7385. [PubMed] [Google Scholar]
  12. Ferguson R. J., Doll M. A., Rustan T. D., Hein D. W. Cloning, expression, and functional characterization of rapid and slow acetylator polymorphic N-acetyl-transferase encoding genes of the Syrian hamster. Pharmacogenetics. 1996 Feb;6(1):55–66. doi: 10.1097/00008571-199602000-00004. [DOI] [PubMed] [Google Scholar]
  13. Fischer D., Barret C., Bryson K., Elofsson A., Godzik A., Jones D., Karplus K. J., Kelley L. A., MacCallum R. M., Pawowski K. CAFASP-1: critical assessment of fully automated structure prediction methods. Proteins. 1999;Suppl 3:209–217. doi: 10.1002/(sici)1097-0134(1999)37:3+<209::aid-prot27>3.3.co;2-p. [DOI] [PubMed] [Google Scholar]
  14. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodfellow G. H., Dupret J. M., Grant D. M. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2. Biochem J. 2000 May 15;348(Pt 1):159–166. [PMC free article] [PubMed] [Google Scholar]
  16. Grant D. M., Blum M., Beer M., Meyer U. A. Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of liver isozymes and expressed products of two cloned genes. Mol Pharmacol. 1991 Feb;39(2):184–191. [PubMed] [Google Scholar]
  17. Grant D. M., Hughes N. C., Janezic S. A., Goodfellow G. H., Chen H. J., Gaedigk A., Yu V. L., Grewal R. Human acetyltransferase polymorphisms. Mutat Res. 1997 May 12;376(1-2):61–70. doi: 10.1016/s0027-5107(97)00026-2. [DOI] [PubMed] [Google Scholar]
  18. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  19. Hein D. W., Doll M. A., Fretland A. J., Leff M. A., Webb S. J., Xiao G. H., Devanaboyina U. S., Nangju N. A., Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000 Jan;9(1):29–42. [PubMed] [Google Scholar]
  20. Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
  21. Johnston S. C., Larsen C. N., Cook W. J., Wilkinson K. D., Hill C. P. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 1997 Jul 1;16(13):3787–3796. doi: 10.1093/emboj/16.13.3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelly S. L., Sim E. Arylamine N-acetyltransferase in Balb/c mice: identification of a novel mouse isoenzyme by cloning and expression in vitro. Biochem J. 1994 Sep 1;302(Pt 2):347–353. doi: 10.1042/bj3020347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  24. Li A. X., Steffens J. C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6902–6907. doi: 10.1073/pnas.110154197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. [DOI] [PubMed] [Google Scholar]
  26. Matas N., Thygesen P., Stacey M., Risch A., Sim E. Mapping AAC1, AAC2 and AACP, the genes for arylamine N-acetyltransferases, carcinogen metabolising enzymes on human chromosome 8p22, a region frequently deleted in tumours. Cytogenet Cell Genet. 1997;77(3-4):290–295. doi: 10.1159/000134601. [DOI] [PubMed] [Google Scholar]
  27. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  28. Ohsako S., Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem. 1990 Mar 15;265(8):4630–4634. [PubMed] [Google Scholar]
  29. Ohsako S., Ohtomi M., Sakamoto Y., Uyemura K., Deguchi T. Arylamine N-acetyltransferase from chicken liver II. Cloning of cDNA and expression in Chinese hamster ovary cells. J Biol Chem. 1988 Jun 5;263(16):7534–7538. [PubMed] [Google Scholar]
  30. Okoniewska M., Tanaka T., Yada R. Y. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis. Biochem J. 2000 Jul 1;349(Pt 1):169–177. doi: 10.1042/0264-6021:3490169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Payton M., Auty R., Delgoda R., Everett M., Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol. 1999 Feb;181(4):1343–1347. doi: 10.1128/jb.181.4.1343-1347.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peters G. H., Iversen L. F., Branner S., Andersen H. S., Mortensen S. B., Olsen O. H., Moller K. B., Moller N. P. Residue 259 is a key determinant of substrate specificity of protein-tyrosine phosphatases 1B and alpha. J Biol Chem. 2000 Jun 16;275(24):18201–18209. doi: 10.1074/jbc.M910273199. [DOI] [PubMed] [Google Scholar]
  33. Rawlings N. D., Barrett A. J. Families of cysteine peptidases. Methods Enzymol. 1994;244:461–486. doi: 10.1016/0076-6879(94)44034-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  35. Sasaki Y., Ohsako S., Deguchi T. Molecular and genetic analyses of arylamine N-acetyltransferase polymorphism of rabbit liver. J Biol Chem. 1991 Jul 15;266(20):13243–13250. [PubMed] [Google Scholar]
  36. Shindyalov I. N., Bourne P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1998 Sep;11(9):739–747. doi: 10.1093/protein/11.9.739. [DOI] [PubMed] [Google Scholar]
  37. Sim E., Payton M., Noble M., Minchin R. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet. 2000 Oct;9(16):2435–2441. doi: 10.1093/hmg/9.16.2435. [DOI] [PubMed] [Google Scholar]
  38. Sinclair J. C., Delgoda R., Noble M. E., Jarmin S., Goh N. K., Sim E. Purification, characterization, and crystallization of an N-hydroxyarylamine O-acetyltransferase from Salmonella typhimurium. Protein Expr Purif. 1998 Apr;12(3):371–380. doi: 10.1006/prep.1997.0856. [DOI] [PubMed] [Google Scholar]
  39. Sinclair J. C., Sandy J., Delgoda R., Sim E., Noble M. E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol. 2000 Jul;7(7):560–564. doi: 10.1038/76783. [DOI] [PubMed] [Google Scholar]
  40. Sinclair J., Sim E. A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N-acetyltransferase one (NAT1) and the first transacetylation step of catalysis. Biochem Pharmacol. 1997 Jan 10;53(1):11–16. doi: 10.1016/s0006-2952(96)00592-8. [DOI] [PubMed] [Google Scholar]
  41. Thornton J. M., Todd A. E., Milburn D., Borkakoti N., Orengo C. A. From structure to function: approaches and limitations. Nat Struct Biol. 2000 Nov;7 (Suppl):991–994. doi: 10.1038/80784. [DOI] [PubMed] [Google Scholar]
  42. Via A., Ferrè F., Brannetti B., Valencia A., Helmer-Citterich M. Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution. J Mol Biol. 2000 Nov 3;303(4):455–465. doi: 10.1006/jmbi.2000.4151. [DOI] [PubMed] [Google Scholar]
  43. Watanabe M., Igarashi T., Kaminuma T., Sofuni T., Nohmi T. N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium: proposal for a common catalytic mechanism of arylamine acetyltransferase enzymes. Environ Health Perspect. 1994 Oct;102 (Suppl 6):83–89. doi: 10.1289/ehp.94102s683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watanabe M., Sofuni T., Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem. 1992 Apr 25;267(12):8429–8436. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES