Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):361–368. doi: 10.1042/0264-6021:3560361

Effects of histatin 5 and derived peptides on Candida albicans.

A L Ruissen 1, J Groenink 1, E J Helmerhorst 1, E Walgreen-Weterings 1, W Van't Hof 1, E C Veerman 1, A V Nieuw Amerongen 1
PMCID: PMC1221846  PMID: 11368762

Abstract

Three anti-microbial peptides were compared with respect to their killing activity against Candida albicans and their ability to disturb its cellular and internal membranes. Histatin 5 is an anti-fungal peptide occurring naturally in human saliva, while dhvar4 and dhvar5 are variants of its active domain, with increased anti-microbial activity. dhvar4 has increased amphipathicity compared with histatin 5, whereas dhvar5 has amphipathicity comparable with that of histatin 5. All three peptides caused depolarization of the cytoplasmic and/or mitochondrial membrane, indicating membranolytic activity. For the variant peptides both depolarization and killing occurred at a faster rate. With FITC-labelled peptides, no association with the cytoplasmic membrane was observed, contradicting the formation of permanent transmembrane multimeric peptide pores. Instead, the peptides were internalized and act on internal membranes, as demonstrated with mitochondrion- and vacuole-specific markers. In comparison with histatin 5, the variant peptides showed a more destructive effect on mitochondria. Entry of the peptides and subsequent killing were dependent on the metabolic state of the cells. Blocking of the mitochondrial activity led to complete protection against histatin 5 activity, whereas that of dhvar4 was hardly affected and that of dhvar5 was affected only intermediately.

Full Text

The Full Text of this article is available as a PDF (261.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspedon A., Groisman E. A. The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium. Microbiology. 1996 Dec;142(Pt 12):3389–3397. doi: 10.1099/13500872-142-12-3389. [DOI] [PubMed] [Google Scholar]
  2. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
  3. Boman H. G., Agerberth B., Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978–2984. doi: 10.1128/iai.61.7.2978-2984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boman H. G. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol. 1998 Jul;48(1):15–25. doi: 10.1046/j.1365-3083.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  5. Breukink E., van Kraaij C., Demel R. A., Siezen R. J., Kuipers O. P., de Kruijff B. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry. 1997 Jun 10;36(23):6968–6976. doi: 10.1021/bi970008u. [DOI] [PubMed] [Google Scholar]
  6. Bulet P., Urge L., Ohresser S., Hetru C., Otvos L., Jr Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem. 1996 May 15;238(1):64–69. doi: 10.1111/j.1432-1033.1996.0064q.x. [DOI] [PubMed] [Google Scholar]
  7. Casteels P., Tempst P. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun. 1994 Feb 28;199(1):339–345. doi: 10.1006/bbrc.1994.1234. [DOI] [PubMed] [Google Scholar]
  8. Couto M. A., Harwig S. S., Lehrer R. I. Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils. Infect Immun. 1993 Jul;61(7):2991–2994. doi: 10.1128/iai.61.7.2991-2994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eddy A. A., Hopkins P. G. The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate. Biochem J. 1985 Oct 15;231(2):291–297. doi: 10.1042/bj2310291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edgerton M., Koshlukova S. E., Lo T. E., Chrzan B. G., Straubinger R. M., Raj P. A. Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem. 1998 Aug 7;273(32):20438–20447. doi: 10.1074/jbc.273.32.20438. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  12. Falla T. J., Karunaratne D. N., Hancock R. E. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996 Aug 9;271(32):19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
  13. Gyurko C., Lendenmann U., Troxler R. F., Oppenheim F. G. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother. 2000 Feb;44(2):348–354. doi: 10.1128/aac.44.2.348-354.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hancock R. E., Chapple D. S. Peptide antibiotics. Antimicrob Agents Chemother. 1999 Jun;43(6):1317–1323. doi: 10.1128/aac.43.6.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hancock R. E., Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998 Feb;16(2):82–88. doi: 10.1016/s0167-7799(97)01156-6. [DOI] [PubMed] [Google Scholar]
  16. Helmerhorst E. J., Breeuwer P., van't Hof W., Walgreen-Weterings E., Oomen L. C., Veerman E. C., Amerongen A. V., Abee T. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999 Mar 12;274(11):7286–7291. doi: 10.1074/jbc.274.11.7286. [DOI] [PubMed] [Google Scholar]
  17. Helmerhorst E. J., Van't Hof W., Veerman E. C., Simoons-Smit I., Nieuw Amerongen A. V. Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J. 1997 Aug 15;326(Pt 1):39–45. doi: 10.1042/bj3260039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  19. Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):210–214. doi: 10.1073/pnas.87.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koshlukova S. E., Lloyd T. L., Araujo M. W., Edgerton M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem. 1999 Jul 2;274(27):18872–18879. doi: 10.1074/jbc.274.27.18872. [DOI] [PubMed] [Google Scholar]
  21. Lehrer R. I., Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol. 1999 Feb;11(1):23–27. doi: 10.1016/s0952-7915(99)80005-3. [DOI] [PubMed] [Google Scholar]
  22. Lehrer R. I., Ganz T., Szklarek D., Selsted M. E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest. 1988 Jun;81(6):1829–1835. doi: 10.1172/JCI113527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R. M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998 Aug 25;37(34):11856–11863. doi: 10.1021/bi980539y. [DOI] [PubMed] [Google Scholar]
  24. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  25. Park C. B., Kim M. S., Kim S. C. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun. 1996 Jan 5;218(1):408–413. doi: 10.1006/bbrc.1996.0071. [DOI] [PubMed] [Google Scholar]
  26. Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pérez-Payá E., Houghten R. A., Blondelle S. E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J Biol Chem. 1995 Jan 20;270(3):1048–1056. doi: 10.1074/jbc.270.3.1048. [DOI] [PubMed] [Google Scholar]
  28. Skerlavaj B., Romeo D., Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun. 1990 Nov;58(11):3724–3730. doi: 10.1128/iai.58.11.3724-3730.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Troxler R. F., Offner G. D., Xu T., Vanderspek J. C., Oppenheim F. G. Structural relationship between human salivary histatins. J Dent Res. 1990 Jan;69(1):2–6. doi: 10.1177/00220345900690010101. [DOI] [PubMed] [Google Scholar]
  30. Wieprecht T., Apostolov O., Beyermann M., Seelig J. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry. 2000 Jan 18;39(2):442–452. doi: 10.1021/bi992146k. [DOI] [PubMed] [Google Scholar]
  31. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  32. Xu Y., Ambudkar I., Yamagishi H., Swaim W., Walsh T. J., O'Connell B. C. Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother. 1999 Sep;43(9):2256–2262. doi: 10.1128/aac.43.9.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van 't Hof W., Driedijk P. C., van den Berg M., Beck-Sickinger A. G., Jung G., Aalberse R. C. Epitope mapping of the Dermatophagoides pteronyssinus house dust mite major allergen Der p II using overlapping synthetic peptides. Mol Immunol. 1991 Nov;28(11):1225–1232. doi: 10.1016/0161-5890(91)90009-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES