Abstract
The equine conceptus is surrounded by a fibrous capsule that persists until about day 20 of pregnancy, whereupon the capsule is lost, the conceptus attaches to the endometrium and placentation proceeds. Before attachment, the endometrium secretes in abundance a protein of the lipocalin family, uterocalin. The cessation of secretion coincides with the end of the period during which the conceptus is enclosed in its capsule, suggesting that uterocalin is essential for the support of the embryo before direct contact between maternal and foetal tissues is established. Using recombinant protein and fluorescence-based assays, we show that equine uterocalin binds the fluorescent fatty acids 11-(dansylamino)undecanoic acid, dansyl-D,L-alpha-amino-octanoic acid and cis-parinaric acid, and, by competition, oleic, palmitic, arachidonic, docosahexaenoic, gamma-linolenic, cis-eicosapentaenoic and linoleic acids. Uterocalin also binds all-trans-retinol, the binding site for which is coincident or interactive with that for fatty acids. Molecular modelling and intrinsic fluorescence analysis of the wild-type protein and a Trp-->Glu mutant protein indicated that uterocalin has an unusually solvent-exposed Trp side chain projecting from its large helix directly into solvent. This feature is unusual among lipocalins and might relate to binding to, and uptake by, the trophoblast. Uterocalin therefore has the localization and binding activities for the provisioning of the equine conceptus with lipids including those essential for morphogenesis and pattern formation. The possession of a fibrous capsule surrounding the conceptus might be an ancestral condition in mammals; homologues of uterocalin might be essential for early development in marsupials and in eutherians in which there is a prolonged preimplantation period.
Full Text
The Full Text of this article is available as a PDF (255.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker S. F., Othman R., Wilton D. C. Tryptophan-containing mutant of human (group IIa) secreted phospholipase A2 has a dramatically increased ability to hydrolyze phosphatidylcholine vesicles and cell membranes. Biochemistry. 1998 Sep 22;37(38):13203–13211. doi: 10.1021/bi981223t. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betteridge K. J., Eaglesome M. D., Mitchell D., Flood P. F., Beriault R. Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J Anat. 1982 Aug;135(Pt 1):191–209. [PMC free article] [PubMed] [Google Scholar]
- Bogan A. A., Thorn K. S. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998 Jul 3;280(1):1–9. doi: 10.1006/jmbi.1998.1843. [DOI] [PubMed] [Google Scholar]
- Bordo D., Argos P. Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol. 1991 Feb 20;217(4):721–729. doi: 10.1016/0022-2836(91)90528-e. [DOI] [PubMed] [Google Scholar]
- Buhi W. C., Alvarez I. M., Shille V. M., Thatcher M. J., Harney J. P., Cotton M. Purification and characterization of a uterine retinol-binding protein in the bitch. Biochem J. 1995 Oct 15;311(Pt 2):407–415. doi: 10.1042/bj3110407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böcskei Z., Groom C. R., Flower D. R., Wright C. E., Phillips S. E., Cavaggioni A., Findlay J. B., North A. C. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature. 1992 Nov 12;360(6400):186–188. doi: 10.1038/360186a0. [DOI] [PubMed] [Google Scholar]
- Campbell F. M., Clohessy A. M., Gordon M. J., Page K. R., Dutta-Roy A. K. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: role of plasma membrane fatty acid-binding protein. J Lipid Res. 1997 Dec;38(12):2558–2568. [PubMed] [Google Scholar]
- Chaudhuri B. N., Kleywegt G. J., Björkman J., Lehman-McKeeman L. D., Oliver J. D., Jones T. A. The structures of alpha 2u-globulin and its complex with a hyaline droplet inducer. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):753–762. doi: 10.1107/s0907444998017211. [DOI] [PubMed] [Google Scholar]
- Cho Y., Batt C. A., Sawyer L. Probing the retinol-binding site of bovine beta-lactoglobulin. J Biol Chem. 1994 Apr 15;269(15):11102–11107. [PubMed] [Google Scholar]
- Coe N. R., Bernlohr D. A. Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta. 1998 Apr 22;1391(3):287–306. doi: 10.1016/s0005-2760(97)00205-1. [DOI] [PubMed] [Google Scholar]
- Cogan U., Kopelman M., Mokady S., Shinitzky M. Binding affinities of retinol and related compounds to retinol binding proteins. Eur J Biochem. 1976 May 17;65(1):71–78. doi: 10.1111/j.1432-1033.1976.tb10390.x. [DOI] [PubMed] [Google Scholar]
- Crossett B., Allen W. R., Stewart F. A 19 kDa protein secreted by the endometrium of the mare is a novel member of the lipocalin family. Biochem J. 1996 Nov 15;320(Pt 1):137–143. doi: 10.1042/bj3200137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crossett B., Suire S., Herrler A., Allen W. R., Stewart F. Transfer of a uterine lipocalin from the endometrium of the mare to the developing equine conceptus. Biol Reprod. 1998 Sep;59(3):483–490. doi: 10.1095/biolreprod59.3.483. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Dutta-Roy A. K. Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cell Mol Life Sci. 2000 Sep;57(10):1360–1372. doi: 10.1007/PL00000621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
- Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
- Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frapin D., Dufour E., Haertle T. Probing the fatty acid binding site of beta-lactoglobulins. J Protein Chem. 1993 Aug;12(4):443–449. doi: 10.1007/BF01025044. [DOI] [PubMed] [Google Scholar]
- Gasymov O. K., Abduragimov A. R., Yusifov T. N., Glasgow B. J. Binding studies of tear lipocalin: the role of the conserved tryptophan in maintaining structure, stability and ligand affinity. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):307–320. doi: 10.1016/s0167-4838(99)00133-8. [DOI] [PubMed] [Google Scholar]
- Gelb M. H., Cho W., Wilton D. C. Interfacial binding of secreted phospholipases A(2): more than electrostatics and a major role for tryptophan. Curr Opin Struct Biol. 1999 Aug;9(4):428–432. doi: 10.1016/S0959-440X(99)80059-1. [DOI] [PubMed] [Google Scholar]
- Guo Z., Zhou D., Schultz P. G. Designing small-molecule switches for protein-protein interactions. Science. 2000 Jun 16;288(5473):2042–2045. doi: 10.1126/science.288.5473.2042. [DOI] [PubMed] [Google Scholar]
- Harder J. D., Stonerook M. J., Pondy J. Gestation and placentation in two New World opossums: Didelphis virginiana and Monodelphis domestica. J Exp Zool. 1993 Aug 1;266(5):463–479. doi: 10.1002/jez.1402660511. [DOI] [PubMed] [Google Scholar]
- Janin J. Surface and inside volumes in globular proteins. Nature. 1979 Feb 8;277(5696):491–492. doi: 10.1038/277491a0. [DOI] [PubMed] [Google Scholar]
- Kachel K., Asuncion-Punzalan E., London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 1995 Nov 28;34(47):15475–15479. doi: 10.1021/bi00047a012. [DOI] [PubMed] [Google Scholar]
- Kennedy M. W., Brass A., McCruden A. B., Price N. C., Kelly S. M., Cooper A. The ABA-1 allergen of the parasitic nematode Ascaris suum: fatty acid and retinoid binding function and structural characterization. Biochemistry. 1995 May 23;34(20):6700–6710. doi: 10.1021/bi00020a015. [DOI] [PubMed] [Google Scholar]
- Kennedy M. W., Britton C., Price N. C., Kelly S. M., Cooper A. The DvA-1 polyprotein of the parasitic nematode Dictyocaulus viviparus. A small helix-rich lipid-binding protein. J Biol Chem. 1995 Aug 18;270(33):19277–19281. doi: 10.1074/jbc.270.33.19277. [DOI] [PubMed] [Google Scholar]
- Kennedy M. W., Garside L. H., Goodrick L. E., McDermott L., Brass A., Price N. C., Kelly S. M., Cooper A., Bradley J. E. The Ov20 protein of the parasitic nematode Onchocerca volvulus. A structurally novel class of small helix-rich retinol-binding proteins. J Biol Chem. 1997 Nov 21;272(47):29442–29448. doi: 10.1074/jbc.272.47.29442. [DOI] [PubMed] [Google Scholar]
- Kwong P. D., Wyatt R., Robinson J., Sweet R. W., Sodroski J., Hendrickson W. A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998 Jun 18;393(6686):648–659. doi: 10.1038/31405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
- Macgregor R. B., Weber G. Estimation of the polarity of the protein interior by optical spectroscopy. Nature. 1986 Jan 2;319(6048):70–73. doi: 10.1038/319070a0. [DOI] [PubMed] [Google Scholar]
- Morriss-Kay G. M., Sokolova N. Embryonic development and pattern formation. FASEB J. 1996 Jul;10(9):961–968. doi: 10.1096/fasebj.10.9.8801178. [DOI] [PubMed] [Google Scholar]
- Mägert H. J., Hadrys T., Cieslak A., Gröger A., Feller S., Forssmann W. G. cDNA sequence and expression pattern of the putative pheromone carrier aphrodisin. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2091–2095. doi: 10.1073/pnas.92.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noy N. Retinoid-binding proteins: mediators of retinoid action. Biochem J. 2000 Jun 15;348(Pt 3):481–495. [PMC free article] [PubMed] [Google Scholar]
- Oriol J. G., Sharom F. J., Betteridge K. J. Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. J Reprod Fertil. 1993 Nov;99(2):653–664. doi: 10.1530/jrf.0.0990653. [DOI] [PubMed] [Google Scholar]
- Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
- Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
- Samuel C. A., Allen W. R., Steven D. H. Studies on the equine placenta. I. Development of the microcotyledons. J Reprod Fertil. 1974 Dec;41(2):441–445. doi: 10.1530/jrf.0.0410441. [DOI] [PubMed] [Google Scholar]
- Sawyer L., Kontopidis G. The core lipocalin, bovine beta-lactoglobulin. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):136–148. doi: 10.1016/s0167-4838(00)00160-6. [DOI] [PubMed] [Google Scholar]
- Stallings-Mann M. L., Trout W. E., Roberts R. M. Porcine uterine retinol-binding proteins are identical gene products to the serum retinol-binding protein. Biol Reprod. 1993 May;48(5):998–1005. doi: 10.1095/biolreprod48.5.998. [DOI] [PubMed] [Google Scholar]
- Thompson J., Winter N., Terwey D., Bratt J., Banaszak L. The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem. 1997 Mar 14;272(11):7140–7150. doi: 10.1074/jbc.272.11.7140. [DOI] [PubMed] [Google Scholar]
- Thumser A. E., Evans C., Worrall A. F., Wilton D. C. Effect on ligand binding of arginine mutations in recombinant rat liver fatty acid-binding protein. Biochem J. 1994 Jan 1;297(Pt 1):103–107. doi: 10.1042/bj2970103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thumser A. E., Wilton D. C. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants. Biochem J. 1994 Jun 15;300(Pt 3):827–833. doi: 10.1042/bj3000827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thumser A. E., Wilton D. C. The binding of cholesterol and bile salts to recombinant rat liver fatty acid-binding protein. Biochem J. 1996 Dec 15;320(Pt 3):729–733. doi: 10.1042/bj3200729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veerkamp J. H., van Moerkerk H. T., Prinsen C. F., van Kuppevelt T. H. Structural and functional studies on different human FABP types. Mol Cell Biochem. 1999 Feb;192(1-2):137–142. [PubMed] [Google Scholar]
- Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue. Biochem J. 1986 Sep 1;238(2):419–424. doi: 10.1042/bj2380419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu S. Y., Pérez M. D., Puyol P., Sawyer L. beta-lactoglobulin binds palmitate within its central cavity. J Biol Chem. 1999 Jan 1;274(1):170–174. doi: 10.1074/jbc.274.1.170. [DOI] [PubMed] [Google Scholar]
- Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]