Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):433–444. doi: 10.1042/0264-6021:3560433

Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach.

C Chassagnole 1, D A Fell 1, B Raïs 1, B Kudla 1, J P Mazat 1
PMCID: PMC1221854  PMID: 11368770

Abstract

A computer simulation of the threonine-synthesis pathway in Escherichia coli Tir-8 has been developed based on our previous measurements of the kinetics of the pathway enzymes under near-physiological conditions. The model successfully simulates the main features of the time courses of threonine synthesis previously observed in a cell-free extract without alteration of the experimentally determined parameters, although improved quantitative fits can be obtained with small parameter adjustments. At the concentrations of enzymes, precursors and products present in cells, the model predicts a threonine-synthesis flux close to that required to support cell growth. Furthermore, the first two enzymes operate close to equilibrium, providing an example of a near-equilibrium feedback-inhibited enzyme. The predicted flux control coefficients of the pathway enzymes under physiological conditions show that the control of flux is shared between the first three enzymes: aspartate kinase, aspartate semialdehyde dehydrogenase and homoserine dehydrogenase, with no single activity dominating the control. The response of the model to the external metabolites shows that the sharing of control between the three enzymes holds across a wide range of conditions, but that the pathway flux is sensitive to the aspartate concentration. When the model was embedded in a larger model to simulate the variable demands for threonine at different growth rates, it showed the accumulation of free threonine that is typical of the Tir-8 strain at low growth rates. At low growth rates, the control of threonine flux remains largely with the pathway enzymes. As an example of the predictive power of the model, we studied the consequences of over-expressing different enzymes in the pathway.

Full Text

The Full Text of this article is available as a PDF (271.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK S., WRIGHT N. G. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem. 1955 Mar;213(1):39–50. [PubMed] [Google Scholar]
  2. Cayley S., Lewis B. A., Guttman H. J., Record M. T., Jr Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol. 1991 Nov 20;222(2):281–300. doi: 10.1016/0022-2836(91)90212-o. [DOI] [PubMed] [Google Scholar]
  3. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chassagnole C., Raïs B., Quentin E., Fell D. A., Mazat J. P. An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochem J. 2001 Jun 1;356(Pt 2):415–423. doi: 10.1042/0264-6021:3560415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colón G. E., Jetten M. S., Nguyen T. T., Gubler M. E., Follettie M. T., Sinskey A. J., Stephanopoulos G. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl Environ Microbiol. 1995 Jan;61(1):74–78. doi: 10.1128/aem.61.1.74-78.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cremer Josef, Eggeling Lothar, Sahm Hermann. Control of the Lysine Biosynthesis Sequence in Corynebacterium glutamicum as Analyzed by Overexpression of the Individual Corresponding Genes. Appl Environ Microbiol. 1991 Jun;57(6):1746–1752. doi: 10.1128/aem.57.6.1746-1752.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farfán M. J., Aparicio L., Calderón I. L. Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters. Appl Environ Microbiol. 1999 Jan;65(1):110–116. doi: 10.1128/aem.65.1.110-116.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fell D. A., Thomas S. Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J. 1995 Oct 1;311(Pt 1):35–39. doi: 10.1042/bj3110035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fell DA. Increasing the flux in metabolic pathways: A metabolic control analysis perspective . Biotechnol Bioeng. 1998 Apr 5;58(2-3):121–124. doi: 10.1002/(sici)1097-0290(19980420)58:2/3<121::aid-bit2>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  11. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  12. Holms W. H. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul. 1986;28:69–105. doi: 10.1016/b978-0-12-152828-7.50004-4. [DOI] [PubMed] [Google Scholar]
  13. Kacser H., Acerenza L. A universal method for achieving increases in metabolite production. Eur J Biochem. 1993 Sep 1;216(2):361–367. doi: 10.1111/j.1432-1033.1993.tb18153.x. [DOI] [PubMed] [Google Scholar]
  14. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  15. Kholodenko B. N., Cascante M., Hoek J. B., Westerhoff H. V., Schwaber J. Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes. Biotechnol Bioeng. 1998 Jul 20;59(2):239–247. doi: 10.1002/(sici)1097-0290(19980720)59:2<239::aid-bit11>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  16. Lilius E. M., Multanen V. M., Toivonen V. Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem. 1979 Oct 15;99(1):22–27. doi: 10.1016/0003-2697(79)90039-3. [DOI] [PubMed] [Google Scholar]
  17. Niederberger P., Prasad R., Miozzari G., Kacser H. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J. 1992 Oct 15;287(Pt 2):473–479. doi: 10.1042/bj2870473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nielsen J. Metabolic engineering: techniques for analysis of targets for genetic manipulations. 1998 Apr 20-May 5Biotechnol Bioeng. 58(2-3):125–132. doi: 10.1002/(sici)1097-0290(19980420)58:2/3<125::aid-bit3>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  19. Raïs B., Chassagnole C., Letellier T., Fell D. A., Mazat J. P. Threonine synthesis from aspartate in Escherichia coli cell-free extracts: pathway dynamics. Biochem J. 2001 Jun 1;356(Pt 2):425–432. doi: 10.1042/0264-6021:3560425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reder C. Metabolic control theory: a structural approach. J Theor Biol. 1988 Nov 21;135(2):175–201. doi: 10.1016/s0022-5193(88)80073-0. [DOI] [PubMed] [Google Scholar]
  21. Reinscheid D. J., Kronemeyer W., Eggeling L., Eikmanns B. J., Sahm H. Stable Expression of hom-1-thrB in Corynebacterium glutamicum and Its Effect on the Carbon Flux to Threonine and Related Amino Acids. Appl Environ Microbiol. 1994 Jan;60(1):126–132. doi: 10.1128/aem.60.1.126-132.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sauro H. M. SCAMP: a general-purpose simulator and metabolic control analysis program. Comput Appl Biosci. 1993 Aug;9(4):441–450. doi: 10.1093/bioinformatics/9.4.441. [DOI] [PubMed] [Google Scholar]
  23. Small J. R., Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur J Biochem. 1993 Apr 1;213(1):613–624. doi: 10.1111/j.1432-1033.1993.tb17801.x. [DOI] [PubMed] [Google Scholar]
  24. Snell K., Fell D. A. Metabolic control analysis of mammalian serine metabolism. Adv Enzyme Regul. 1990;30:13–32. doi: 10.1016/0065-2571(90)90006-n. [DOI] [PubMed] [Google Scholar]
  25. Thomas S., Mooney P. J., Burrell M. M., Fell D. A. Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J. 1997 Feb 15;322(Pt 1):119–127. doi: 10.1042/bj3220119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wimpenny J. W., Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol. 1972 Jul;111(1):24–32. doi: 10.1128/jb.111.1.24-32.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang C., Hua Q., Shimizu K. Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng. 1999;88(4):393–403. doi: 10.1016/s1389-1723(99)80216-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES