Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):453–460. doi: 10.1042/0264-6021:3560453

Thermostability of endo-1,4-beta-xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering.

J Jänis 1, J Rouvinen 1, M Leisola 1, O Turunen 1, P Vainiotalo 1
PMCID: PMC1221856  PMID: 11368772

Abstract

Endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei is a 21 kDa enzyme that catalyses the hydrolysis of xylan, the major plant hemicellulose. It has various applications in the paper, food and feed industries. Previous thermostability studies have revealed a significant decrease in enzymic activity of the protein at elevated temperatures in citrate buffer [Tenkanen, Puls and Poutanen (1992) Enzyme Microb. Technol. 14, 566-574]. Here, thermostability of XYNII was investigated using both conventional and nanoelectrospray ionization Fourier-transform ion cyclotron resonance MS and hydrogen/deuterium (H/D)-exchange reactions. In addition, dynamic light scattering (DLS) was used as a comparative method to observe possible changes in both tertiary and quaternary structures of the protein. We observed a significant irreversible conformational change and dimerization when the protein was exposed to heat. H/D exchange revealed two distinct monomeric protein populations in a narrow transition temperature region. The conformational change in both the water and buffered solutions occurred in the same temperature region where enzymic-activity loss had previously been observed. Approx. 10-30% of the protein was specifically dimerized when exposed to the heat treatment. However, adding methanol to the solution markedly lowered the transition temperature of conformational change as well as increased the dimerization up to 90%. DLS studies in water confirmed the change in conformation observed by electrospray ionization MS. We propose that the conformational change is responsible for the loss of enzymic activity at temperatures over 50 degrees C and that the functioning of the active site in the enzyme is unfeasible in a new, more labile solution conformation.

Full Text

The Full Text of this article is available as a PDF (234.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai Y., Milne J. S., Mayne L., Englander S. W. Protein stability parameters measured by hydrogen exchange. Proteins. 1994 Sep;20(1):4–14. doi: 10.1002/prot.340200103. [DOI] [PubMed] [Google Scholar]
  2. Bohidar H. B. Light scattering and viscosity study of heat aggregation of insulin. Biopolymers. 1998;45(1):1–8. doi: 10.1002/(SICI)1097-0282(199801)45:1<1::AID-BIP1>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  3. Boisset C., Borsali R., Schülein M., Henrissat B. Dynamic light scattering study of the two-domain structure of Humicola insolens endoglucanase V. FEBS Lett. 1995 Nov 27;376(1-2):49–52. doi: 10.1016/0014-5793(95)01244-0. [DOI] [PubMed] [Google Scholar]
  4. Deng Y., Zhang Z., Smith D. L. Comparison of continuous and pulsed labeling amide hydrogen exchange/mass spectrometry for studies of protein dynamics. J Am Soc Mass Spectrom. 1999 Aug;10(8):675–684. doi: 10.1016/S1044-0305(99)00038-0. [DOI] [PubMed] [Google Scholar]
  5. Feng B., Smith R. D. A simple nanoelectrospray arrangement with controllable flowrate for mass analysis of submicroliter protein samples. J Am Soc Mass Spectrom. 2000 Jan;11(1):94–99. doi: 10.1016/S1044-0305(99)00124-5. [DOI] [PubMed] [Google Scholar]
  6. Ferré-D'Amaré A. R., Burley S. K. Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure. 1994 May 15;2(5):357–359. doi: 10.1016/s0969-2126(00)00037-x. [DOI] [PubMed] [Google Scholar]
  7. Gast K., Damaschun G., Misselwitz R., Zirwer D. Application of dynamic light scattering to studies of protein folding kinetics. Eur Biophys J. 1992;21(5):357–362. doi: 10.1007/BF00188349. [DOI] [PubMed] [Google Scholar]
  8. Geromanos S., Freckleton G., Tempst P. Tuning of an electrospray ionization source for maximum peptide-ion transmission into a mass spectrometer. Anal Chem. 2000 Feb 15;72(4):777–790. doi: 10.1021/ac991071n. [DOI] [PubMed] [Google Scholar]
  9. Green M. K., Lebrilla C. B. Ion-molecule reactions as probes of gas-phase structures of peptides and proteins. Mass Spectrom Rev. 1997 Mar-Apr;16(2):53–71. doi: 10.1002/(SICI)1098-2787(1997)16:2<53::AID-MAS1>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  10. Gross M., Robinson C. V., Mayhew M., Hartl F. U., Radford S. E. Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Protein Sci. 1996 Dec;5(12):2506–2513. doi: 10.1002/pro.5560051213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutierrez M. M., Tsai S. W., Phillips M. L., Curtiss L. K., Milne R. W., Schumaker V. N. Studying low-density lipoprotein-monoclonal antibody complexes using dynamic laser light scattering and analytical ultracentrifugation. Biochemistry. 1999 Jan 26;38(4):1284–1292. doi: 10.1021/bi981424x. [DOI] [PubMed] [Google Scholar]
  12. Guy P. A., Anderegg R. J. Analysis of macromolecules using nanoelectrospray ionization mass spectrometry and low-energy collision activation. Anal Chem. 1997 Aug 15;69(16):3188–3192. doi: 10.1021/ac961293a. [DOI] [PubMed] [Google Scholar]
  13. Guy P., Rémigy H., Jaquinod M., Bersch B., Blanchard L., Dolla A., Forest E. Study of the new stability properties induced by amino acid replacement of tyrosine 64 in cytochrome C553 from Desulfovibrio vulgaris Hildenborough using electrospray ionization mass spectrometry. Biochem Biophys Res Commun. 1996 Jan 5;218(1):97–103. doi: 10.1006/bbrc.1996.0018. [DOI] [PubMed] [Google Scholar]
  14. Hantgan R. R., Braaten J. V., Rocco M. Dynamic light scattering studies of alpha IIb beta 3 solution conformation. Biochemistry. 1993 Apr 20;32(15):3935–3941. doi: 10.1021/bi00066a013. [DOI] [PubMed] [Google Scholar]
  15. Konermann L., Douglas D. J. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry. 1997 Oct 7;36(40):12296–12302. doi: 10.1021/bi971266u. [DOI] [PubMed] [Google Scholar]
  16. Konermann L., Douglas D. J. Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two-state from multi-state transitions. Rapid Commun Mass Spectrom. 1998;12(8):435–442. doi: 10.1002/(SICI)1097-0231(19980430)12:8<435::AID-RCM181>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  17. Kwansa H. E., Young A. D., Arosio D., Razynska A., Bucci E. Adipyl crosslinked bovine hemoglobins as new models of allosteric systems. Proteins. 2000 May 1;39(2):166–169. [PubMed] [Google Scholar]
  18. Maier C. S., Schimerlik M. I., Deinzer M. L. Thermal denaturation of Escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: monitoring a two-state protein unfolding transition. Biochemistry. 1999 Jan 19;38(3):1136–1143. doi: 10.1021/bi981938w. [DOI] [PubMed] [Google Scholar]
  19. Mirza U. A., Cohen S. L., Chait B. T. Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry. Anal Chem. 1993 Jan 1;65(1):1–6. doi: 10.1021/ac00049a003. [DOI] [PubMed] [Google Scholar]
  20. Muilu J., Törrönen A., Peräkylä M., Rouvinen J. Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins. 1998 Jun 1;31(4):434–444. [PubMed] [Google Scholar]
  21. Mullen C. A., Jennings P. A. Glycinamide ribonucleotide transformylase undergoes pH-dependent dimerization. J Mol Biol. 1996 Oct 11;262(5):746–755. doi: 10.1006/jmbi.1996.0549. [DOI] [PubMed] [Google Scholar]
  22. Nemirovskiy O., Giblin D. E., Gross M. L. Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. J Am Soc Mass Spectrom. 1999 Aug;10(8):711–718. doi: 10.1016/S1044-0305(99)00036-7. [DOI] [PubMed] [Google Scholar]
  23. Nicoli D. F., Benedek G. B. Study of thermal denaturation of lysozyme and other glubular proteins by light-scattering spectroscopy. Biopolymers. 1976 Dec;15(12NA-NA-770103-770104):2421–2437. doi: 10.1002/bip.1976.360151209. [DOI] [PubMed] [Google Scholar]
  24. Resing K. A., Hoofnagle A. N., Ahn N. G. Modeling deuterium exchange behavior of ERK2 using pepsin mapping to probe secondary structure. J Am Soc Mass Spectrom. 1999 Aug;10(8):685–702. doi: 10.1016/S1044-0305(99)00037-9. [DOI] [PubMed] [Google Scholar]
  25. Törrönen A., Rouvinen J. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry. 1995 Jan 24;34(3):847–856. doi: 10.1021/bi00003a019. [DOI] [PubMed] [Google Scholar]
  26. Wang F., Li W., Emmett M. R., Hendrickson C. L., Marshall A. G., Zhang Y. L., Wu L., Zhang Z. Y. Conformational and dynamic changes of Yersinia protein tyrosine phosphatase induced by ligand binding and active site mutation and revealed by H/D exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Biochemistry. 1998 Nov 3;37(44):15289–15299. doi: 10.1021/bi981481q. [DOI] [PubMed] [Google Scholar]
  27. Wang F., Li W., Emmett M. R., Marshall A. G., Corson D., Sykes B. D. Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. J Am Soc Mass Spectrom. 1999 Aug;10(8):703–710. doi: 10.1016/S1044-0305(99)00039-2. [DOI] [PubMed] [Google Scholar]
  28. Wang F., Tang X. Conformational heterogeneity of stability of apomyoglobin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry. Biochemistry. 1996 Apr 2;35(13):4069–4078. doi: 10.1021/bi9521304. [DOI] [PubMed] [Google Scholar]
  29. Wu H., Kwong P. D., Hendrickson W. A. Dimeric association and segmental variability in the structure of human CD4. Nature. 1997 May 29;387(6632):527–530. doi: 10.1038/387527a0. [DOI] [PubMed] [Google Scholar]
  30. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang Z., Smith D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993 Apr;2(4):522–531. doi: 10.1002/pro.5560020404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhang Z., Smith D. L. Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. Protein Sci. 1996 Jul;5(7):1282–1289. doi: 10.1002/pro.5560050707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES