Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):487–493. doi: 10.1042/0264-6021:3560487

Pressure- and heat-induced inactivation of butyrylcholinesterase: evidence for multiple intermediates and the remnant inactivation process.

A Weingand-Ziade 1, F Ribes 1, F Renault 1, P Masson 1
PMCID: PMC1221860  PMID: 11368776

Abstract

The inactivation process of native (N) human butyrylcholinesterase (BuChE) by pressure and/or heat was found to be multi-step. It led to irreversible formation of an active intermediate (I) state and a denatured state. This series-inactivation process was described by expanding the Lumry-Eyring [Lumry, R. and Eyring, H. (1954) J. Phys. Chem. 58, 110-120] model. The intermediate state (I) was found to have a K(m) identical with that of the native state and a turnover rate (k(cat)) twofold higher than that of the native state with butyrylthiocholine as the substrate. The increased catalytic efficiency (k(cat)/K(m)) of I can be explained by a conformational change in the active-site gorge and/or restructuring of the water-molecule network in the active-site pocket, making the catalytic steps faster. However, a pressure/heat-induced covalent modification of native BuChE, affecting the catalytic machinery, cannot be ruled out. The inactivation process of BuChE induced by the combined action of pressure and heat was found to continue after interruption of pressure/temperature treatment. This secondary inactivation process was termed 'remnant inactivation'. We hypothesized that N and I were in equilibrium with populated metastable N' and I' states. The N' and I' states can either return to the active forms, N and I, or develop into inactive forms, N(')(in) and I(')(in). Both active N' and I' intermediate states displayed different rates of remnant inactivation depending on the pressure and temperature pretreatments and on the storage temperature. A first-order deactivation model describing the kinetics of the remnant inactivation of BuChE is proposed.

Full Text

The Full Text of this article is available as a PDF (177.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broomfield C. A., Lockridge O., Millard C. B. Protein engineering of a human enzyme that hydrolyzes V and G nerve agents: design, construction and characterization. Chem Biol Interact. 1999 May 14;119-120:413–418. doi: 10.1016/s0009-2797(99)00053-8. [DOI] [PubMed] [Google Scholar]
  2. Carmona G. N., Jufer R. A., Goldberg S. R., Gorelick D. A., Greig N. H., Yu Q. S., Cone E. J., Schindler C. W. Butyrylcholinesterase accelerates cocaine metabolism: in vitro and in vivo effects in nonhuman primates and humans. Drug Metab Dispos. 2000 Mar;28(3):367–371. [PubMed] [Google Scholar]
  3. Cauet G., Friboulet A., Thomas D. Substrate activation and thermal denaturation kinetics of the tetrameric and the trypsin-generated monomeric forms of horse serum butyrylcholinesterase. Biochim Biophys Acta. 1987 Apr 30;912(3):338–342. doi: 10.1016/0167-4838(87)90037-9. [DOI] [PubMed] [Google Scholar]
  4. Chatonnet A., Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989 Jun 15;260(3):625–634. doi: 10.1042/bj2600625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clery C., Bec N., Balny C., Mozhaev V. V., Masson P. Kinetics of butyrylcholinesterase in reversed micelles under high pressure. Biochim Biophys Acta. 1995 Nov 15;1253(1):85–93. doi: 10.1016/0167-4838(95)00137-j. [DOI] [PubMed] [Google Scholar]
  6. Cléry C., Renault F., Masson P. Pressure-induced molten globule state of cholinesterase. FEBS Lett. 1995 Aug 21;370(3):212–214. doi: 10.1016/0014-5793(95)00787-a. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  8. Froment M. T., Lockridge O., Masson P. Resistance of butyrylcholinesterase to inactivation by ultrasound: effects of ultrasound on catalytic activity and subunit association. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):53–64. doi: 10.1016/s0167-4838(98)00105-8. [DOI] [PubMed] [Google Scholar]
  9. Harel M., Sussman J. L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10827–10831. doi: 10.1073/pnas.89.22.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
  11. LAWLER H. C. Turnover time of acetylcholinesterase. J Biol Chem. 1961 Aug;236:2296–2301. [PubMed] [Google Scholar]
  12. Leuzinger W. The number of catalytic sites in acetylcholinesterase. Biochem J. 1971 Jun;123(2):139–141. doi: 10.1042/bj1230139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levitsky V., Xie W., Froment M. T., Lockridge O., Masson P. Polyol-induced activation by excess substrate of the D70G butyrylcholinesterase mutant. Biochim Biophys Acta. 1999 Jan 11;1429(2):422–430. doi: 10.1016/s0167-4838(98)00253-2. [DOI] [PubMed] [Google Scholar]
  14. Mack A., Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. Prog Neurobiol. 2000 Apr;60(6):607–628. doi: 10.1016/s0301-0082(99)00047-7. [DOI] [PubMed] [Google Scholar]
  15. Masson P., Balny C. Conformational plasticity of butyrylcholinesterase as revealed by high pressure experiments. Biochim Biophys Acta. 1990 Dec 5;1041(3):223–231. doi: 10.1016/0167-4838(90)90276-l. [DOI] [PubMed] [Google Scholar]
  16. Masson P., Cléry C., Guerra P., Redslob A., Albaret C., Fortier P. L. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Biochem J. 1999 Oct 15;343(Pt 2):361–369. [PMC free article] [PubMed] [Google Scholar]
  17. Masson P., Froment M. T., Bartels C. F., Lockridge O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem. 1996 Jan 15;235(1-2):36–48. doi: 10.1111/j.1432-1033.1996.00036.x. [DOI] [PubMed] [Google Scholar]
  18. Masson P., Gouet P., Clery C. Pressure and propylene carbonate denaturation of native and "aged" phosphorylated cholinesterase. J Mol Biol. 1994 May 6;238(3):466–478. doi: 10.1006/jmbi.1994.1305. [DOI] [PubMed] [Google Scholar]
  19. Masson P., Laurentie M. Stability of butyrylcholinesterase: thermal inactivation in water and deuterium oxide. Biochim Biophys Acta. 1988 Nov 2;957(1):111–121. doi: 10.1016/0167-4838(88)90163-x. [DOI] [PubMed] [Google Scholar]
  20. Masson P., Legrand P., Bartels C. F., Froment M. T., Schopfer L. M., Lockridge O. Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry. 1997 Feb 25;36(8):2266–2277. doi: 10.1021/bi962484a. [DOI] [PubMed] [Google Scholar]
  21. Masson P., Xie W., Froment M. T., Levitsky V., Fortier P. L., Albaret C., Lockridge O. Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):281–293. doi: 10.1016/s0167-4838(99)00115-6. [DOI] [PubMed] [Google Scholar]
  22. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  23. Michels P. C., Hei D., Clark D. S. Pressure effects on enzyme activity and stability at high temperatures. Adv Protein Chem. 1996;48:341–376. doi: 10.1016/s0065-3233(08)60366-6. [DOI] [PubMed] [Google Scholar]
  24. Morton C. L., Wadkins R. M., Danks M. K., Potter P. M. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 1999 Apr 1;59(7):1458–1463. [PubMed] [Google Scholar]
  25. Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  26. Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
  27. Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol. 1993 Jun 22;45(12):2465–2474. doi: 10.1016/0006-2952(93)90228-o. [DOI] [PubMed] [Google Scholar]
  28. Rochu D., Georges C., Répiton J., Viguié N., Saliou B., Bon C., Masson P. Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis. Biochim Biophys Acta. 2001 Feb 9;1545(1-2):216–226. doi: 10.1016/s0167-4838(00)00279-x. [DOI] [PubMed] [Google Scholar]
  29. Rosenberry T. L. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol. 1975;43:103–218. doi: 10.1002/9780470122884.ch3. [DOI] [PubMed] [Google Scholar]
  30. Ruan K., Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase. Biochemistry. 1989 Mar 7;28(5):2144–2153. doi: 10.1021/bi00431a028. [DOI] [PubMed] [Google Scholar]
  31. Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
  32. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  34. Weingand-Ziadé A., Renault F., Masson P. Combined pressure/heat-induced inactivation of butyrylcholinesterase. Biochim Biophys Acta. 1997 Jul 18;1340(2):245–252. doi: 10.1016/s0167-4838(97)00051-4. [DOI] [PubMed] [Google Scholar]
  35. Weingand-Ziadé A., Renault F., Masson P. Differential effect of pressure and temperature on the catalytic behaviour of wild-type human butyrylcholinesterase and its D70G mutant. Eur J Biochem. 1999 Sep;264(2):327–335. doi: 10.1046/j.1432-1327.1999.00609.x. [DOI] [PubMed] [Google Scholar]
  36. Xie W., Altamirano C. V., Bartels C. F., Speirs R. J., Cashman J. R., Lockridge O. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient. Mol Pharmacol. 1999 Jan;55(1):83–91. doi: 10.1124/mol.55.1.83. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES