Abstract
A well-established protocol to increase the intracellular content of ascorbic acid was used to investigate the effects of the vitamin on DNA single-strand breakage and toxicity mediated by authentic peroxynitrite (ONOO(-)) in U937 cells. This protocol involved exposure for 60 min to 100 microM dehydroascorbic acid, which was taken up by the cells and converted into ascorbic acid via a GSH-independent mechanism. At the time of exposure to ONOO(-), which was performed in fresh saline immediately after loading with dehydroascorbic acid, the vitamin present in the cells was all in its reduced form. It was found that, in cells that are otherwise ascorbate-deficient, an increase in their ascorbic acid content does not prevent, but rather enhances, the DNA-damaging and lethal responses mediated by exogenous ONOO(-). These results therefore suggest that acute supplementation of ascorbic acid can be detrimental for individuals with pathologies associated with a decrease in ascorbic acid and in which ONOO(-) is known to promote deleterious effects.
Full Text
The Full Text of this article is available as a PDF (121.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AVRON M., SHAVIT N. A SENSITIVE AND SIMPLE METHOD FOR DETERMINATION OF FERROCYANIDE. Anal Biochem. 1963 Dec;6:549–554. doi: 10.1016/0003-2697(63)90149-0. [DOI] [PubMed] [Google Scholar]
- Baader S. L., Bill E., Trautwein A. X., Bruchelt G., Matzanke B. F. Mobilization of iron from cellular ferritin by ascorbic acid in neuroblastoma SK-N-SH cells: an EPR study. FEBS Lett. 1996 Feb 26;381(1-2):131–134. doi: 10.1016/0014-5793(96)00098-1. [DOI] [PubMed] [Google Scholar]
- Baader S. L., Bruchelt G., Carmine T. C., Lode H. N., Rieth A. G., Niethammer D. Ascorbic-acid-mediated iron release from cellular ferritin and its relation to the formation of DNA strand breaks in neuroblastoma cells. J Cancer Res Clin Oncol. 1994;120(7):415–421. doi: 10.1007/BF01240141. [DOI] [PubMed] [Google Scholar]
- Balavoine G. G., Geletii Y. V. Peroxynitrite scavenging by different antioxidants. Part I: convenient assay. Nitric Oxide. 1999;3(1):40–54. doi: 10.1006/niox.1999.0206. [DOI] [PubMed] [Google Scholar]
- Bartlett D., Church D. F., Bounds P. L., Koppenol W. H. The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Radic Biol Med. 1995 Jan;18(1):85–92. doi: 10.1016/0891-5849(94)e0133-4. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Crow J. P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans. 1993 May;21(2):330–334. doi: 10.1042/bst0210330. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. [DOI] [PubMed] [Google Scholar]
- Buettner G. R., Jurkiewicz B. A. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res. 1996 May;145(5):532–541. [PubMed] [Google Scholar]
- Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999 Jun;13(9):1007–1024. doi: 10.1096/fasebj.13.9.1007. [DOI] [PubMed] [Google Scholar]
- Cassina A., Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996 Apr 15;328(2):309–316. doi: 10.1006/abbi.1996.0178. [DOI] [PubMed] [Google Scholar]
- Chaudière J., Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999 Sep-Oct;37(9-10):949–962. doi: 10.1016/s0278-6915(99)00090-3. [DOI] [PubMed] [Google Scholar]
- Chesney J. A., Mahoney J. R., Jr, Eaton J. W. A spectrophotometric assay for chlorine-containing compounds. Anal Biochem. 1991 Aug 1;196(2):262–266. doi: 10.1016/0003-2697(91)90463-4. [DOI] [PubMed] [Google Scholar]
- Chou P. T., Khan A. U. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C. Biochem Biophys Res Commun. 1983 Sep 30;115(3):932–937. doi: 10.1016/s0006-291x(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Guaiquil V. H., Farber C. M., Golde D. W., Vera J. C. Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J Biol Chem. 1997 Apr 11;272(15):9915–9921. doi: 10.1074/jbc.272.15.9915. [DOI] [PubMed] [Google Scholar]
- Kveder M., Pifat G., Pecar S., Schara M., Ramos P., Esterbauer H. Nitroxide reduction with ascorbic acid in spin labeled human plasma LDL and VLDL. Chem Phys Lipids. 1997 Jan 17;85(1):1–12. doi: 10.1016/s0009-3084(96)02636-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine M., Conry-Cantilena C., Wang Y., Welch R. W., Washko P. W., Dhariwal K. R., Park J. B., Lazarev A., Graumlich J. F., King J. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3704–3709. doi: 10.1073/pnas.93.8.3704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Licht W. R., Tannenbaum S. R., Deen W. M. Use of ascorbic acid to inhibit nitrosation: kinetic and mass transfer considerations for an in vitro system. Carcinogenesis. 1988 Mar;9(3):365–372. doi: 10.1093/carcin/9.3.365. [DOI] [PubMed] [Google Scholar]
- May J. M., Mendiratta S., Hill K. E., Burk R. F. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem. 1997 Sep 5;272(36):22607–22610. doi: 10.1074/jbc.272.36.22607. [DOI] [PubMed] [Google Scholar]
- May J. M., Mendiratta S., Qu Z. C., Loggins E. Vitamin C recycling and function in human monocytic U-937 cells. Free Radic Biol Med. 1999 Jun;26(11-12):1513–1523. doi: 10.1016/s0891-5849(99)00017-9. [DOI] [PubMed] [Google Scholar]
- May J. M., Qu Z. C., Whitesell R. R., Cobb C. E. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med. 1996;20(4):543–551. doi: 10.1016/0891-5849(95)02130-2. [DOI] [PubMed] [Google Scholar]
- McLaran C. J., Bett J. H., Nye J. A., Halliday J. W. Congestive cardiomyopathy and haemochromatosis--rapid progression possibly accelerated by excessive ingestion of ascorbic acid. Aust N Z J Med. 1982 Apr;12(2):187–188. doi: 10.1111/j.1445-5994.1982.tb02457.x. [DOI] [PubMed] [Google Scholar]
- Packer M. A., Scarlett J. L., Martin S. W., Murphy M. P. Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans. 1997 Aug;25(3):909–914. doi: 10.1042/bst0250909. [DOI] [PubMed] [Google Scholar]
- Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
- Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
- Rose R. C. Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation. Biochim Biophys Acta. 1987 Apr 16;924(1):254–256. doi: 10.1016/0304-4165(87)90094-8. [DOI] [PubMed] [Google Scholar]
- Sandoval M., Zhang X. J., Liu X., Mannick E. E., Clark D. A., Miller M. J. Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells: attenuation by L-ascorbic acid. Free Radic Biol Med. 1997;22(3):489–495. doi: 10.1016/s0891-5849(96)00374-7. [DOI] [PubMed] [Google Scholar]
- Savini I., Duflot S., Avigliano L. Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. Biochem J. 2000 Feb 1;345(Pt 3):665–672. [PMC free article] [PubMed] [Google Scholar]
- Sestili P., Cantoni O. Osmotically driven radial diffusion of single-stranded DNA fragments on an agarose bed as a convenient measure of DNA strand scission. Free Radic Biol Med. 1999 Apr;26(7-8):1019–1026. doi: 10.1016/s0891-5849(98)00290-1. [DOI] [PubMed] [Google Scholar]
- Squadrito G. L., Jin X., Pryor W. A. Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite. Arch Biochem Biophys. 1995 Sep 10;322(1):53–59. doi: 10.1006/abbi.1995.1435. [DOI] [PubMed] [Google Scholar]
- Sun A. Y., Chen Y. M. Oxidative stress and neurodegenerative disorders. J Biomed Sci. 1998 Nov-Dec;5(6):401–414. doi: 10.1007/BF02255928. [DOI] [PubMed] [Google Scholar]
- Szabó C., Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997 Oct;1(5):373–385. doi: 10.1006/niox.1997.0143. [DOI] [PubMed] [Google Scholar]
- Van Duijn M. M., Van der Zee J., VanSteveninck J., Van den Broek P. J. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem. 1998 May 29;273(22):13415–13420. doi: 10.1074/jbc.273.22.13415. [DOI] [PubMed] [Google Scholar]
- Vera J. C., Rosen O. M. Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity. Mol Cell Biol. 1989 Oct;9(10):4187–4195. doi: 10.1128/mcb.9.10.4187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vethanayagam J. G., Green E. H., Rose R. C., Bode A. M. Glutathione-dependent ascorbate recycling activity of rat serum albumin. Free Radic Biol Med. 1999 Jun;26(11-12):1591–1598. doi: 10.1016/s0891-5849(99)00031-3. [DOI] [PubMed] [Google Scholar]
- Washko P. W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. J Biol Chem. 1993 Jul 25;268(21):15531–15535. [PubMed] [Google Scholar]
- Wells W. W., Xu D. P., Yang Y. F., Rocque P. A. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990 Sep 15;265(26):15361–15364. [PubMed] [Google Scholar]
- Winkler B. S., Orselli S. M., Rex T. S. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med. 1994 Oct;17(4):333–349. doi: 10.1016/0891-5849(94)90019-1. [DOI] [PubMed] [Google Scholar]