Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):515–523. doi: 10.1042/0264-6021:3560515

Triacylglycerol-rich lipoproteins alter the secretion, and the cholesterol-effluxing function, of apolipoprotein E-containing lipoprotein particles from human (THP-1) macrophages.

E M Lindholm 1, A M Palmer 1, A Graham 1
PMCID: PMC1221864  PMID: 11368780

Abstract

Elevated plasma levels of triacylglycerol-rich lipoproteins (TGRLP) are associated with increased risk of atherogenesis and abnormal reverse cholesterol transport, as illustrated in Type II diabetes. Here we examine the effect of plasma triacylglycerol-rich or cholesteryl ester-rich lipoproteins on the secretion of nascent apolipoprotein E (apoE)-containing lipoprotein E (LpE) particles by human (THP-1) macrophages. As expected, preincubation with low-density lipoprotein (LDL) yielded small but significant increases in total cellular cholesterol content and also the secretion of apoE by macrophages. By contrast, preincubation with TGRLP resulted in higher, dose-dependent, increases in apoE secretion that reflected, but were not dependent on, cellular triacylglycerol accumulation. Secreted apoE was incorporated into a pre-beta migrating LpE fraction that differed in lipid composition and flotation density depending on preincubation conditions. Specifically, the LpE-containing lipoprotein fraction produced by macrophages preincubated with TGRLP was cholesterol-poor, markedly heterogeneous and of higher peak flotation density (d 1.14-1.18) when compared with particles produced after preincubation with LDL. Both the conditioned medium and the isolated (d<1.21) LpE-containing fraction, yielded by macrophages preincubated with TGRLP, seemed poorer at inducing cholesterol efflux than the equivalent fractions from cells preincubated with LDL, as judged by [(3)H]cholesterol efflux from untreated 'naïve' macrophages. Thus, although the interaction of TGRLP with macrophages can enhance apoE output from these cells, the LpE particles produced seem to be relatively inefficient mediators of cholesterol efflux. These factors might contribute to the increased risk of atherosclerosis in individuals with Type II diabetes.

Full Text

The Full Text of this article is available as a PDF (217.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asztalos B., Zhang W., Roheim P. S., Wong L. Role of free apolipoprotein A-I in cholesterol efflux. Formation of pre-alpha-migrating high-density lipoprotein particles. Arterioscler Thromb Vasc Biol. 1997 Sep;17(9):1630–1636. doi: 10.1161/01.atv.17.9.1630. [DOI] [PubMed] [Google Scholar]
  2. Bates S. R., Murphy P. L., Feng Z. C., Kanazawa T., Getz G. S. Very low density lipoproteins promote triglyceride accumulation in macrophages. Arteriosclerosis. 1984 Mar-Apr;4(2):103–114. doi: 10.1161/01.atv.4.2.103. [DOI] [PubMed] [Google Scholar]
  3. Bellosta S., Mahley R. W., Sanan D. A., Murata J., Newland D. L., Taylor J. M., Pitas R. E. Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice. J Clin Invest. 1995 Nov;96(5):2170–2179. doi: 10.1172/JCI118271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bielicki J. K., McCall M. R., Forte T. M. Apolipoprotein A-I promotes cholesterol release and apolipoprotein E recruitment from THP-1 macrophage-like foam cells. J Lipid Res. 1999 Jan;40(1):85–92. [PubMed] [Google Scholar]
  5. Bodzioch M., Orsó E., Klucken J., Langmann T., Böttcher A., Diederich W., Drobnik W., Barlage S., Büchler C., Porsch-Ozcürümez M. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999 Aug;22(4):347–351. doi: 10.1038/11914. [DOI] [PubMed] [Google Scholar]
  6. Boisvert W. A., Black A. S., Curtiss L. K. ApoA1 reduces free cholesterol accumulation in atherosclerotic lesions of ApoE-deficient mice transplanted with ApoE-expressing macrophages. Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):525–530. doi: 10.1161/01.atv.19.3.525. [DOI] [PubMed] [Google Scholar]
  7. Brooks-Wilson A., Marcil M., Clee S. M., Zhang L. H., Roomp K., van Dam M., Yu L., Brewer C., Collins J. A., Molhuizen H. O. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999 Aug;22(4):336–345. doi: 10.1038/11905. [DOI] [PubMed] [Google Scholar]
  8. Carantoni M., Abbasi F., Chu L., Chen Y. D., Reaven G. M., Tsao P. S., Varasteh B., Cooke J. P. Adherence of mononuclear cells to endothelium in vitro is increased in patients with NIDDM. Diabetes Care. 1997 Sep;20(9):1462–1465. doi: 10.2337/diacare.20.9.1462. [DOI] [PubMed] [Google Scholar]
  9. Castro G. R., Fielding C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988 Jan 12;27(1):25–29. doi: 10.1021/bi00401a005. [DOI] [PubMed] [Google Scholar]
  10. Cavallero E., Brites F., Delfly B., Nicolaïew N., Decossin C., De Geitere C., Fruchart J. C., Wikinski R., Jacotot B., Castro G. Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2130–2135. doi: 10.1161/01.atv.15.12.2130. [DOI] [PubMed] [Google Scholar]
  11. Chung B. H., Wilkinson T., Geer J. C., Segrest J. P. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980 Mar;21(3):284–291. [PubMed] [Google Scholar]
  12. DeMattos R. B., Curtiss L. K., Williams D. L. A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J Biol Chem. 1998 Feb 13;273(7):4206–4212. doi: 10.1074/jbc.273.7.4206. [DOI] [PubMed] [Google Scholar]
  13. Fisher C. A., Ryan R. O. Lipid binding-induced conformational changes in the N-terminal domain of human apolipoprotein E. J Lipid Res. 1999 Jan;40(1):93–99. [PubMed] [Google Scholar]
  14. Fujioka Y., Cooper A. D., Fong L. G. Multiple processes are involved in the uptake of chylomicron remnants by mouse peritoneal macrophages. J Lipid Res. 1998 Dec;39(12):2339–2349. [PubMed] [Google Scholar]
  15. Garner B., Baoutina A., Dean R. T., Jessup W. Regulation of serum-induced lipid accumulation in human monocyte-derived macrophages by interferon-gamma. Correlations with apolipoprotein E production, lipoprotein lipase activity and LDL receptor-related protein expression. Atherosclerosis. 1997 Jan 3;128(1):47–58. doi: 10.1016/s0021-9150(96)05979-5. [DOI] [PubMed] [Google Scholar]
  16. Gong E. L., Nichols A. V., Weisgraber K. H., Forte T. M., Shore V. G., Blanche P. J. Discoidal complexes containing apolipoprotein E and their transformation by lecithin-cholesterol acyltransferase. Biochim Biophys Acta. 1989 Dec 18;1006(3):317–328. doi: 10.1016/0005-2760(89)90019-2. [DOI] [PubMed] [Google Scholar]
  17. Graham A., Angell A. D., Jepson C. A., Yeaman S. J., Hassall D. G. Impaired mobilisation of cholesterol from stored cholesteryl esters in human (THP-1) macrophages. Atherosclerosis. 1996 Feb;120(1-2):135–145. doi: 10.1016/0021-9150(95)05695-5. [DOI] [PubMed] [Google Scholar]
  18. Graham A., Vinogradov D. V., Owen J. S. Effects of peroxynitrite on plasma components of the reverse cholesterol transport pathway. FEBS Lett. 1998 Jul 24;431(3):327–332. doi: 10.1016/s0014-5793(98)00785-6. [DOI] [PubMed] [Google Scholar]
  19. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hokanson J. E., Austin M. A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996 Apr;3(2):213–219. [PubMed] [Google Scholar]
  21. Huang Y., von Eckardstein A., Wu S., Maeda N., Assmann G. A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1834–1838. doi: 10.1073/pnas.91.5.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huff M. W., Miller D. B., Wolfe B. M., Connelly P. W., Sawyez C. G. Uptake of hypertriglyceridemic very low density lipoproteins and their remnants by HepG2 cells: the role of lipoprotein lipase, hepatic triglyceride lipase, and cell surface proteoglycans. J Lipid Res. 1997 Jul;38(7):1318–1333. [PubMed] [Google Scholar]
  23. Kruth H. S., Skarlatos S. I., Gaynor P. M., Gamble W. Production of cholesterol-enriched nascent high density lipoproteins by human monocyte-derived macrophages is a mechanism that contributes to macrophage cholesterol efflux. J Biol Chem. 1994 Sep 30;269(39):24511–24518. [PubMed] [Google Scholar]
  24. Mahley R. W., Weisgraber K. H., Innerarity T. L., Rall S. C., Jr Genetic defects in lipoprotein metabolism. Elevation of atherogenic lipoproteins caused by impaired catabolism. JAMA. 1991 Jan 2;265(1):78–83. doi: 10.1001/jama.265.1.78. [DOI] [PubMed] [Google Scholar]
  25. Mamo J. C., Wheeler J. R. Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin. Coron Artery Dis. 1994 Aug;5(8):695–705. doi: 10.1097/00019501-199408000-00008. [DOI] [PubMed] [Google Scholar]
  26. Mazzone T., Basheeruddin K., Poulos C. Regulation of macrophage apolipoprotein E gene expression by cholesterol. J Lipid Res. 1989 Jul;30(7):1055–1064. [PubMed] [Google Scholar]
  27. Mazzone T., Gump H., Diller P., Getz G. S. Macrophage free cholesterol content regulates apolipoprotein E synthesis. J Biol Chem. 1987 Aug 25;262(24):11657–11662. [PubMed] [Google Scholar]
  28. Miller M. Is hypertriglyceridaemia an independent risk factor for coronary heart disease? The epidemiological evidence. Eur Heart J. 1998 Jul;19 (Suppl H):H18–H22. [PubMed] [Google Scholar]
  29. Namatame I., Tomoda H., Arai H., Inoue K., Omura S. Complete inhibition of mouse macrophage-derived foam cell formation by triacsin C. J Biochem. 1999 Feb;125(2):319–327. doi: 10.1093/oxfordjournals.jbchem.a022289. [DOI] [PubMed] [Google Scholar]
  30. Parker F., Bagdade J. D., Odland G. F., Bierman E. L. Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: a correlative lipid biochemical, histochemical, and electron microscopic study. J Clin Invest. 1970 Dec;49(12):2172–2187. doi: 10.1172/JCI106436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  32. Proctor S. D., Mamo J. C. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall--evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur J Clin Invest. 1998 Jun;28(6):497–503. doi: 10.1046/j.1365-2362.1998.00317.x. [DOI] [PubMed] [Google Scholar]
  33. Rapp J. H., Lespine A., Hamilton R. L., Colyvas N., Chaumeton A. H., Tweedie-Hardman J., Kotite L., Kunitake S. T., Havel R. J., Kane J. P. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994 Nov;14(11):1767–1774. doi: 10.1161/01.atv.14.11.1767. [DOI] [PubMed] [Google Scholar]
  34. Rust S., Rosier M., Funke H., Real J., Amoura Z., Piette J. C., Deleuze J. F., Brewer H. B., Duverger N., Denèfle P. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999 Aug;22(4):352–355. doi: 10.1038/11921. [DOI] [PubMed] [Google Scholar]
  35. Saito M., Eto M., Okada M., Iwashima Y., Makino I. Remnant-like particles (RLP) from NIDDM patients with apolipoprotein E3/3 phenotype stimulate cholesteryl ester synthesis in human monocyte-derived macrophages. Artery. 1996;22(3):155–163. [PubMed] [Google Scholar]
  36. Sattar N., Packard C. J., Petrie J. R. The end of triglycerides in cardiovascular risk assessment?. Rumours of death are greatly exaggerated. BMJ. 1998 Aug 29;317(7158):553–554. doi: 10.1136/bmj.317.7158.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sattar N., Petrie J. R., Jaap A. J. The atherogenic lipoprotein phenotype and vascular endothelial dysfunction. Atherosclerosis. 1998 Jun;138(2):229–235. doi: 10.1016/s0021-9150(98)00037-9. [DOI] [PubMed] [Google Scholar]
  38. Skarlatos S. I., Dichek H. L., Fojo S. S., Brewer H. B., Kruth H. S. Absence of triglyceride accumulation in lipoprotein lipase-deficient human monocyte-macrophages incubated with human very low density lipoprotein. J Clin Endocrinol Metab. 1993 Mar;76(3):793–796. doi: 10.1210/jcem.76.3.8383147. [DOI] [PubMed] [Google Scholar]
  39. Spangenberg J., Curtiss L. K. Influence of macrophage-derived apolipoprotein E on plasma lipoprotein distribution of apolipoprotein A-I in apolipoprotein E-deficient mice. Biochim Biophys Acta. 1997 Nov 15;1349(2):109–121. doi: 10.1016/s0005-2760(97)00123-9. [DOI] [PubMed] [Google Scholar]
  40. Syvänne M., Ahola M., Lahdenperä S., Kahri J., Kuusi T., Virtanen K. S., Taskinen M. R. High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res. 1995 Mar;36(3):573–582. [PubMed] [Google Scholar]
  41. Syvänne M., Castro G., Dengremont C., De Geitere C., Jauhiainen M., Ehnholm C., Michelagnoli S., Franceschini G., Kahri J., Taskinen M. R. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis. 1996 Dec 20;127(2):245–253. doi: 10.1016/s0021-9150(96)05962-x. [DOI] [PubMed] [Google Scholar]
  42. Tagalakis A. D., Graham I. R., Riddell D. R., Dickson J. G., Owen J. S. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J Biol Chem. 2001 Feb 13;276(16):13226–13230. doi: 10.1074/jbc.C000883200. [DOI] [PubMed] [Google Scholar]
  43. Thuren T., Weisgraber K. H., Sisson P., Waite M. Role of apolipoprotein E in hepatic lipase catalyzed hydrolysis of phospholipid in high-density lipoproteins. Biochemistry. 1992 Mar 3;31(8):2332–2338. doi: 10.1021/bi00123a018. [DOI] [PubMed] [Google Scholar]
  44. Tkác I., Kimball B. P., Lewis G., Uffelman K., Steiner G. The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler Thromb Vasc Biol. 1997 Dec;17(12):3633–3638. doi: 10.1161/01.atv.17.12.3633. [DOI] [PubMed] [Google Scholar]
  45. Zhang W. Y., Gaynor P. M., Kruth H. S. Apolipoprotein E produced by human monocyte-derived macrophages mediates cholesterol efflux that occurs in the absence of added cholesterol acceptors. J Biol Chem. 1996 Nov 8;271(45):28641–28646. doi: 10.1074/jbc.271.45.28641. [DOI] [PubMed] [Google Scholar]
  46. Zhang W., Asztalos B., Roheim P. S., Wong L. Characterization of phospholipids in pre-alpha HDL: selective phospholipid efflux with apolipoprotein A-I. J Lipid Res. 1998 Aug;39(8):1601–1607. [PubMed] [Google Scholar]
  47. Zhu Y., Bellosta S., Langer C., Bernini F., Pitas R. E., Mahley R. W., Assmann G., von Eckardstein A. Low-dose expression of a human apolipoprotein E transgene in macrophages restores cholesterol efflux capacity of apolipoprotein E-deficient mouse plasma. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7585–7590. doi: 10.1073/pnas.95.13.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Graaf J., Stalenhoef A. F. Defects of lipoprotein metabolism in familial combined hyperlipidaemia. Curr Opin Lipidol. 1998 Jun;9(3):189–196. doi: 10.1097/00041433-199806000-00002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES