Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):549–555. doi: 10.1042/0264-6021:3560549

Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture.

F Antunes 1, E Cadenas 1, U T Brunk 1
PMCID: PMC1221868  PMID: 11368784

Abstract

We have re-examined the lysosomal hypothesis of oxidative-stress-induced apoptosis using a new technique for exposing cells in culture to a low steady-state concentration of H(2)O(2). This steady-state technique mimics the situation in vivo better than the bolus-administration method. A key aspect of H(2)O(2)-induced apoptosis is that the apoptosis is evident only after several hours, although cells may become committed within a few minutes of exposure to this particular reactive oxygen species. In the present work, we were able to show, for the first time, several correlative links between the triggering effect of H(2)O(2) and the later onset of apoptosis: (i) a short (15 min) exposure to H(2)O(2) caused almost immediate, albeit limited, lysosomal rupture; (ii) early lysosomal damage, and later apoptosis, showed a similar dose-related response to H(2)O(2); (iii) both events were inhibited by pre-treatment with iron chelators, including desferrioxamine. This compound is known to be taken up by endocytosis only and thus to become localized in the lysosomal compartment. After exposure to oxidative stress, when cells were again in standard culture conditions, a time-dependent continuous increase in lysosomal rupture was observed, resulting in a considerably lowered number of intact lysosomes in apoptotic cells, whereas non-apoptotic cells from the same batch of oxidative-stress-exposed cells showed mainly intact lysosomes. Taken together, our results reinforce earlier findings and strongly suggest that lysosomal rupture is an early upstream initiating event, and a consequence of intralysosomal iron-catalysed oxidative processes, when apoptosis is induced by oxidative stress.

Full Text

The Full Text of this article is available as a PDF (161.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., YOUNG M. R. UPTAKE OF DYES AND DRUGS BY LIVING CELLS IN CULTURE. Life Sci. 1964 Dec;3:1407–1414. doi: 10.1016/0024-3205(64)90082-7. [DOI] [PubMed] [Google Scholar]
  2. Antunes F., Cadenas E. Estimation of H2O2 gradients across biomembranes. FEBS Lett. 2000 Jun 16;475(2):121–126. doi: 10.1016/s0014-5793(00)01638-0. [DOI] [PubMed] [Google Scholar]
  3. Blommaart E. F., Luiken J. J., Meijer A. J. Autophagic proteolysis: control and specificity. Histochem J. 1997 May;29(5):365–385. doi: 10.1023/a:1026486801018. [DOI] [PubMed] [Google Scholar]
  4. Brunk U. T., Dalen H., Roberg K., Hellquist H. B. Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med. 1997;23(4):616–626. doi: 10.1016/s0891-5849(97)00007-5. [DOI] [PubMed] [Google Scholar]
  5. Brunk U. T. Lysosomotropic detergents induce time- and dose-dependent apoptosis/necrosis in cultured cells. Redox Rep. 2000;5(2-3):87–88. doi: 10.1179/135100000101535609. [DOI] [PubMed] [Google Scholar]
  6. Brunk U. T., Svensson I. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep. 1999;4(1-2):3–11. doi: 10.1179/135100099101534675. [DOI] [PubMed] [Google Scholar]
  7. Burdon R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995 Apr;18(4):775–794. doi: 10.1016/0891-5849(94)00198-s. [DOI] [PubMed] [Google Scholar]
  8. Cable H., Lloyd J. B. Cellular uptake and release of two contrasting iron chelators. J Pharm Pharmacol. 1999 Feb;51(2):131–134. doi: 10.1211/0022357991772231. [DOI] [PubMed] [Google Scholar]
  9. Davies K. J. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 1999 Jul;48(1):41–47. doi: 10.1080/713803463. [DOI] [PubMed] [Google Scholar]
  10. Ishisaka R., Utsumi T., Kanno T., Arita K., Katunuma N., Akiyama J., Utsumi K. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct. 1999 Dec;24(6):465–470. doi: 10.1247/csf.24.465. [DOI] [PubMed] [Google Scholar]
  11. Ishisaka R., Utsumi T., Yabuki M., Kanno T., Furuno T., Inoue M., Utsumi K. Activation of caspase-3-like protease by digitonin-treated lysosomes. FEBS Lett. 1998 Sep 18;435(2-3):233–236. doi: 10.1016/s0014-5793(98)01080-1. [DOI] [PubMed] [Google Scholar]
  12. Li W., Yuan X., Nordgren G., Dalen H., Dubowchik G. M., Firestone R. A., Brunk U. T. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000 Mar 17;470(1):35–39. doi: 10.1016/s0014-5793(00)01286-2. [DOI] [PubMed] [Google Scholar]
  13. Lloyd J. B., Cable H., Rice-Evans C. Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem Pharmacol. 1991 May 1;41(9):1361–1363. doi: 10.1016/0006-2952(91)90109-i. [DOI] [PubMed] [Google Scholar]
  14. Nicholson D. W., Thornberry N. A. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. doi: 10.1016/s0968-0004(97)01085-2. [DOI] [PubMed] [Google Scholar]
  15. Olejnicka B. T., Ollinger K., Brunk U. T. A short exposure to a high-glucose milieu stabilizes the acidic vacuolar apparatus of insulinoma cells in culture to ensuing oxidative stress. APMIS. 1997 Sep;105(9):689–698. doi: 10.1111/j.1699-0463.1997.tb05072.x. [DOI] [PubMed] [Google Scholar]
  16. Ollinger K. Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch Biochem Biophys. 2000 Jan 15;373(2):346–351. doi: 10.1006/abbi.1999.1567. [DOI] [PubMed] [Google Scholar]
  17. Olsson G. M., Rungby J., Rundquist I., Brunk U. T. Evaluation of lysosomal stability in living cultured macrophages by cytofluorometry. Effect of silver lactate and hypotonic conditions. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;56(4):263–269. doi: 10.1007/BF02890025. [DOI] [PubMed] [Google Scholar]
  18. Petrat F., Rauen U., de Groot H. Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology. 1999 Apr;29(4):1171–1179. doi: 10.1002/hep.510290435. [DOI] [PubMed] [Google Scholar]
  19. Pisoni R. L., Thoene J. G. The transport systems of mammalian lysosomes. Biochim Biophys Acta. 1991 Dec 12;1071(4):351–373. doi: 10.1016/0304-4157(91)90002-e. [DOI] [PubMed] [Google Scholar]
  20. ROBBINS E., MARCUS P. I. DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. I. INTERRELATIONSHIPS OF ACRIDINE ORANGE PARTICLES AND CYTOPLASMIC REDDENING. J Cell Biol. 1963 Aug;18:237–250. doi: 10.1083/jcb.18.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reif D. W. Ferritin as a source of iron for oxidative damage. Free Radic Biol Med. 1992;12(5):417–427. doi: 10.1016/0891-5849(92)90091-t. [DOI] [PubMed] [Google Scholar]
  22. Roberg K., Johansson U., Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999 Dec;27(11-12):1228–1237. doi: 10.1016/s0891-5849(99)00146-x. [DOI] [PubMed] [Google Scholar]
  23. Roberg K., Ollinger K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol. 1998 May;152(5):1151–1156. [PMC free article] [PubMed] [Google Scholar]
  24. Schafer F. Q., Buettner G. R. Acidic pH amplifies iron-mediated lipid peroxidation in cells. Free Radic Biol Med. 2000 Apr 15;28(8):1175–1181. doi: 10.1016/s0891-5849(00)00319-1. [DOI] [PubMed] [Google Scholar]
  25. Stridh H., Kimland M., Jones D. P., Orrenius S., Hampton M. B. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998 Jun 16;429(3):351–355. doi: 10.1016/s0014-5793(98)00630-9. [DOI] [PubMed] [Google Scholar]
  26. Vancompernolle K., Van Herreweghe F., Pynaert G., Van de Craen M., De Vos K., Totty N., Sterling A., Fiers W., Vandenabeele P., Grooten J. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 1998 Nov 6;438(3):150–158. doi: 10.1016/s0014-5793(98)01275-7. [DOI] [PubMed] [Google Scholar]
  27. Yuan X. M., Li W., Brunk U. T., Dalen H., Chang Y. H., Sevanian A. Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med. 2000 Jan 15;28(2):208–218. doi: 10.1016/s0891-5849(99)00220-8. [DOI] [PubMed] [Google Scholar]
  28. Zdolsek J. M., Olsson G. M., Brunk U. T. Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol. 1990 Jan;51(1):67–76. doi: 10.1111/j.1751-1097.1990.tb01685.x. [DOI] [PubMed] [Google Scholar]
  29. Zelenin A. V. Fluorescence microscopy of lysosomes and related structures in living cells. Nature. 1966 Oct 22;212(5060):425–426. doi: 10.1038/212425a0. [DOI] [PubMed] [Google Scholar]
  30. Zhao M., Eaton J. W., Brunk U. T. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett. 2000 Nov 24;485(2-3):104–108. doi: 10.1016/s0014-5793(00)02195-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES