Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):595–604. doi: 10.1042/0264-6021:3560595

Characterization of the gene family encoding alternative oxidase from Candida albicans.

W K Huh 1, S O Kang 1
PMCID: PMC1221874  PMID: 11368790

Abstract

Candida albicans possesses a cyanide-resistant respiratory pathway mediated by alternative oxidase (AOX), which seems to be encoded by a gene family with two members. Cloning and expression of AOX1a, one of the genes encoding alternative oxidase from C. albicans, has previously been reported [Huh and Kang (1999) J. Bacteriol. 181, 4098-4102]. In the present study we report the isolation of another gene coding for alternative oxidase, designated AOX1b. AOX1b contains a continuous open reading frame that encodes a polypeptide consisting of 365 amino acids. Interestingly, AOX1a and AOX1b were found to be located in tandem on one of the chromosomes of C. albicans. The presence of cyanide in the culture medium remarkably retarded the growth of the aox1a/aox1a mutants. The growth of the aox1b/aox1b mutants and the aox1a/aox1a aox1b/aox1b double mutants was almost completely inhibited in the same medium. beta-Galactosidase reporter assays indicated that, whereas AOX1a was expressed constitutively, the expression of AOX1b was dependent on growth phase and was induced by treatment with cyanide, antimycin A, H(2)O(2), menadione and paraquat. Growth of the cells in media with non-fermentable carbon sources also enhanced the expression of AOX1b. CaSLN1, which encodes a histidine kinase, seems to be involved in the regulation of AOX expression in C. albicans on the basis of the observation that the activity of cyanide-resistant respiration and the expression level of AOX in the casln1/casln1 mutants were found to be significantly low under normal conditions and slightly increased in the presence of respiratory inhibitors compared with the wild-type strain. Like AOX1a, AOX1b could also be functionally expressed in AOX-deficient Saccharomyces cerevisiae and confer cyanide-resistant respiration on the organism.

Full Text

The Full Text of this article is available as a PDF (364.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarco A. M., Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol. 1999 Feb;181(3):700–708. doi: 10.1128/jb.181.3.700-708.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chaudhuri M., Ajayi W., Hill G. C. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol. 1998 Sep 1;95(1):53–68. doi: 10.1016/s0166-6851(98)00091-7. [DOI] [PubMed] [Google Scholar]
  3. Chaudhuri M., Hill G. C. Cloning, sequencing, and functional activity of the Trypanosoma brucei brucei alternative oxidase. Mol Biochem Parasitol. 1996 Dec 2;83(1):125–129. doi: 10.1016/s0166-6851(96)02754-5. [DOI] [PubMed] [Google Scholar]
  4. Cruz-Hernández A., Gómez-Lim M. A. Alternative oxidase from mango (Mangifera indica, L.) is differentially regulated during fruit ripening. Planta. 1995;197(4):569–576. doi: 10.1007/BF00191562. [DOI] [PubMed] [Google Scholar]
  5. Doussière J., Vignais P. V. AMP-dependence of the cyanide-insensitive pathway in the respiratory chain of Paramecium tetraurelia. Biochem J. 1984 Jun 15;220(3):787–794. doi: 10.1042/bj2200787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finnegan P. M., Whelan J., Millar A. H., Zhang Q., Smith M. K., Wiskich J. T., Day D. A. Differential expression of the multigene family encoding the soybean mitochondrial alternative oxidase. Plant Physiol. 1997 Jun;114(2):455–466. doi: 10.1104/pp.114.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gavel Y., von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990 Oct;4(1):33–37. doi: 10.1093/protein/4.1.33. [DOI] [PubMed] [Google Scholar]
  10. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983;101:181–191. doi: 10.1016/0076-6879(83)01013-7. [DOI] [PubMed] [Google Scholar]
  11. Henry M. F., Nyns E. D. Cyanide-insensitive respiration. An alternative mitochondrial pathway. Subcell Biochem. 1975 Mar;4(1):1–65. [PubMed] [Google Scholar]
  12. Huh W. K., Kang S. O. Molecular cloning and functional expression of alternative oxidase from Candida albicans. J Bacteriol. 1999 Jul;181(13):4098–4102. doi: 10.1128/jb.181.13.4098-4102.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huh W. K., Kim S. T., Yang K. S., Seok Y. J., Hah Y. C., Kang S. O. Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. Eur J Biochem. 1994 Nov 1;225(3):1073–1079. doi: 10.1111/j.1432-1033.1994.1073b.x. [DOI] [PubMed] [Google Scholar]
  14. Ito Y., Saisho D., Nakazono M., Tsutsumi N., Hirai A. Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene. 1997 Dec 12;203(2):121–129. doi: 10.1016/s0378-1119(97)00502-7. [DOI] [PubMed] [Google Scholar]
  15. Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., Toledano M. B. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 1999 Jun 4;274(23):16040–16046. doi: 10.1074/jbc.274.23.16040. [DOI] [PubMed] [Google Scholar]
  16. Leuker C. E., Sonneborn A., Delbrück S., Ernst J. F. Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene. 1997 Jun 19;192(2):235–240. doi: 10.1016/s0378-1119(97)00069-3. [DOI] [PubMed] [Google Scholar]
  17. Li Q., Ritzel R. G., McLean L. L., McIntosh L., Ko T., Bertrand H., Nargang F. E. Cloning and analysis of the alternative oxidase gene of Neurospora crassa. Genetics. 1996 Jan;142(1):129–140. doi: 10.1093/genetics/142.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li S., Ault A., Malone C. L., Raitt D., Dean S., Johnston L. H., Deschenes R. J., Fassler J. S. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 1998 Dec 1;17(23):6952–6962. doi: 10.1093/emboj/17.23.6952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu H., Köhler J., Fink G. R. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994 Dec 9;266(5191):1723–1726. doi: 10.1126/science.7992058. [DOI] [PubMed] [Google Scholar]
  20. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997 Sep 5;90(5):939–949. doi: 10.1016/s0092-8674(00)80358-x. [DOI] [PubMed] [Google Scholar]
  21. Matsuyama S. I., Maeda Y. Involvement of cyanide-resistant respiration in cell-type proportioning during Dictyostelium development. Dev Biol. 1995 Nov;172(1):182–191. doi: 10.1006/dbio.1995.0014. [DOI] [PubMed] [Google Scholar]
  22. Maxwell D. P., Wang Y., McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8271–8276. doi: 10.1073/pnas.96.14.8271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McCabe TC, Finnegan PM, Harvey Millar A, Day DA, Whelan J. Differential expression of alternative oxidase genes in soybean cotyledons during postgerminative development . Plant Physiol. 1998 Oct;118(2):675–682. doi: 10.1104/pp.118.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minagawa N., Koga S., Nakano M., Sakajo S., Yoshimoto A. Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett. 1992 May 18;302(3):217–219. doi: 10.1016/0014-5793(92)80444-l. [DOI] [PubMed] [Google Scholar]
  25. Morgan B. A., Banks G. R., Toone W. M., Raitt D., Kuge S., Johnston L. H. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 1997 Mar 3;16(5):1035–1044. doi: 10.1093/emboj/16.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parsons H. L., Yip J. Y., Vanlerberghe G. C. Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol. 1999 Dec;121(4):1309–1320. doi: 10.1104/pp.121.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Popov V. N., Simonian R. A., Skulachev V. P., Starkov A. A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 1997 Sep 22;415(1):87–90. doi: 10.1016/s0014-5793(97)01099-5. [DOI] [PubMed] [Google Scholar]
  28. Posas F., Wurgler-Murphy S. M., Maeda T., Witten E. A., Thai T. C., Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996 Sep 20;86(6):865–875. doi: 10.1016/s0092-8674(00)80162-2. [DOI] [PubMed] [Google Scholar]
  29. Rhoads D. M., McIntosh L. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2122–2126. doi: 10.1073/pnas.88.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rhoads D. M., Umbach A. L., Sweet C. R., Lennon A. M., Rauch G. S., Siedow J. N. Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation. J Biol Chem. 1998 Nov 13;273(46):30750–30756. doi: 10.1074/jbc.273.46.30750. [DOI] [PubMed] [Google Scholar]
  31. Saisho D., Nambara E., Naito S., Tsutsumi N., Hirai A., Nakazono M. Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol Biol. 1997 Nov;35(5):585–596. doi: 10.1023/a:1005818507743. [DOI] [PubMed] [Google Scholar]
  32. Sakajo S., Minagawa N., Komiyama T., Yoshimoto A. Molecular cloning of cDNA for antimycin A-inducible mRNA and its role in cyanide-resistant respiration in Hansenula anomala. Biochim Biophys Acta. 1991 Aug 27;1090(1):102–108. doi: 10.1016/0167-4781(91)90043-l. [DOI] [PubMed] [Google Scholar]
  33. Sakajo S., Minagawa N., Yoshimoto A. Effects of nucleotides on cyanide-resistant respiratory activity in mitochondria isolated from antimycin A-treated yeast Hansenula anomala. Biosci Biotechnol Biochem. 1997 Feb;61(2):396–399. doi: 10.1271/bbb.61.396. [DOI] [PubMed] [Google Scholar]
  34. Sakajo S., Minagawa N., Yoshimoto A. Structure and regulatory expression of a single copy alternative oxidase gene from the yeast Pichia anomala. Biosci Biotechnol Biochem. 1999 Nov;63(11):1889–1894. doi: 10.1271/bbb.63.1889. [DOI] [PubMed] [Google Scholar]
  35. Santos M. A., Tuite M. F. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 1995 May 11;23(9):1481–1486. doi: 10.1093/nar/23.9.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  37. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Umbach A. L., Siedow J. N. The cyanide-resistant alternative oxidases from the fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch Biochem Biophys. 2000 Jun 15;378(2):234–245. doi: 10.1006/abbi.2000.1834. [DOI] [PubMed] [Google Scholar]
  39. Umbach A. L., Siedow J. N. The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that alpha-keto acid activation involves the formation of a thiohemiacetal. J Biol Chem. 1996 Oct 4;271(40):25019–25026. doi: 10.1074/jbc.271.40.25019. [DOI] [PubMed] [Google Scholar]
  40. Vanderleyden J., Peeters C., Verachtert H., Bertrand H. Stimulation of the alternative oxidase of Neurospora crassa by Nucleoside phosphates. Biochem J. 1980 Apr 15;188(1):141–144. doi: 10.1042/bj1880141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vanderleyden J., Van Den Eynde E., Verachtert H. Nature of the effect of adenosine 5'-monophosphate on the cyanide-insensitive respiration in mitochondria of Moniliella tomentosa. Biochem J. 1980 Jan 15;186(1):309–316. doi: 10.1042/bj1860309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vanlerberghe G. C., Vanlerberghe A. E., McIntosh L. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco). Plant Physiol. 1994 Dec;106(4):1503–1510. doi: 10.1104/pp.106.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wagner A. M. A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett. 1995 Jul 17;368(2):339–342. doi: 10.1016/0014-5793(95)00688-6. [DOI] [PubMed] [Google Scholar]
  44. Wagner A. M., Moore A. L. Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep. 1997 Jun;17(3):319–333. doi: 10.1023/a:1027388729586. [DOI] [PubMed] [Google Scholar]
  45. Whelan J., Smith M. K., Meijer M., Yu J. W., Badger M. R., Price G. D., Day D. A. Cloning of an additional cDNA for the alternative oxidase in tobacco. Plant Physiol. 1995 Apr;107(4):1469–1470. doi: 10.1104/pp.107.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamada-Okabe T., Mio T., Ono N., Kashima Y., Matsui M., Arisawa M., Yamada-Okabe H. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol. 1999 Dec;181(23):7243–7247. doi: 10.1128/jb.181.23.7243-7247.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES