Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):621–626. doi: 10.1042/0264-6021:3560621

Tributyltin interacts with mitochondria and induces cytochrome c release.

A Nishikimi 1, Y Kira 1, E Kasahara 1, E F Sato 1, T Kanno 1, K Utsumi 1, M Inoue 1
PMCID: PMC1221877  PMID: 11368793

Abstract

Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis.

Full Text

The Full Text of this article is available as a PDF (139.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N., CREMER J. E. The biochemistry of organo-tin compounds; diethyltin dichloride and triethyltin sulphate. Biochem J. 1955 Nov;61(3):406–418. doi: 10.1042/bj0610406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldridge W. N., Street B. W. Oxidative phosphorylation. The specific binding of trimethyltin and triethyltin to rat liver mitochondria. Biochem J. 1970 Jun;118(1):171–179. doi: 10.1042/bj1180171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aw T. Y., Nicotera P., Manzo L., Orrenius S. Tributyltin stimulates apoptosis in rat thymocytes. Arch Biochem Biophys. 1990 Nov 15;283(1):46–50. doi: 10.1016/0003-9861(90)90610-b. [DOI] [PubMed] [Google Scholar]
  4. Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996 Jul 2;35(26):8483–8488. doi: 10.1021/bi960833v. [DOI] [PubMed] [Google Scholar]
  5. Cain K., Griffiths D. E. Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria. Biochem J. 1977 Mar 15;162(3):575–580. doi: 10.1042/bj1620575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chow S. C., Kass G. E., McCabe M. J., Jr, Orrenius S. Tributyltin increases cytosolic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux. Arch Biochem Biophys. 1992 Oct;298(1):143–149. doi: 10.1016/0003-9861(92)90105-6. [DOI] [PubMed] [Google Scholar]
  7. Costa L. G. Inhibition of gamma-[3H]aminobutyric acid uptake by organotin compounds in vitro. Toxicol Appl Pharmacol. 1985 Jul;79(3):471–479. doi: 10.1016/0041-008x(85)90144-9. [DOI] [PubMed] [Google Scholar]
  8. Costantini P., Belzacq A. S., Vieira H. L., Larochette N., de Pablo M. A., Zamzami N., Susin S. A., Brenner C., Kroemer G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000 Jan 13;19(2):307–314. doi: 10.1038/sj.onc.1203299. [DOI] [PubMed] [Google Scholar]
  9. Elliott B. M., Aldridge W. N. Binding of triethyltin to cat haemoglobin and modification of the binding sites by diethyl pyrocarbonate. Biochem J. 1977 Jun 1;163(3):583–589. doi: 10.1042/bj1630583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elliott B. M., Aldridge W. N., Bridges J. W. Triethyltin binding to cat haemoglobin. Evidence for two chemically distinct sites and a role for both histidine and cysteine residues. Biochem J. 1979 Feb 1;177(2):461–470. doi: 10.1042/bj1770461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emanuel E. L., Carver M. A., Solani G. C., Griffiths D. E. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds. Biochim Biophys Acta. 1984 Jul 27;766(1):209–214. doi: 10.1016/0005-2728(84)90233-0. [DOI] [PubMed] [Google Scholar]
  12. Fent K. Ecotoxicology of organotin compounds. Crit Rev Toxicol. 1996 Jan;26(1):1–117. [PubMed] [Google Scholar]
  13. Fonyó A. SH-group reagents as tools in the study of mitochondrial anion transport. J Bioenerg Biomembr. 1978 Dec;10(5-6):171–194. doi: 10.1007/BF00743106. [DOI] [PubMed] [Google Scholar]
  14. Halestrap A. P., Woodfield K. Y., Connern C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997 Feb 7;272(6):3346–3354. doi: 10.1074/jbc.272.6.3346. [DOI] [PubMed] [Google Scholar]
  15. Hall L. W., Jr, Pinkney A. E. Acute and sublethal effects of organotin compounds on aquatic biota: an interpretative literature evaluation. Crit Rev Toxicol. 1985;14(2):159–209. doi: 10.3109/10408448509089853. [DOI] [PubMed] [Google Scholar]
  16. Harris E. J., Bangham J. A., Zukovic B. Equilibration of chloride and pyruvate distributions between liver mitochondria and medium mediated by organo-tin salts. FEBS Lett. 1973 Feb 1;29(3):339–344. doi: 10.1016/0014-5793(73)80054-7. [DOI] [PubMed] [Google Scholar]
  17. Kass G. E., Juedes M. J., Orrenius S. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+ cycling in cytotoxicity. Biochem Pharmacol. 1992 Nov 17;44(10):1995–2003. doi: 10.1016/0006-2952(92)90102-o. [DOI] [PubMed] [Google Scholar]
  18. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  19. Majima E., Ikawa K., Takeda M., Hashimoto M., Shinohara Y., Terada H. Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. J Biol Chem. 1995 Dec 8;270(49):29548–29554. doi: 10.1074/jbc.270.49.29548. [DOI] [PubMed] [Google Scholar]
  20. Marchetti P., Hirsch T., Zamzami N., Castedo M., Decaudin D., Susin S. A., Masse B., Kroemer G. Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol. 1996 Dec 1;157(11):4830–4836. [PubMed] [Google Scholar]
  21. Mustafa M. G., Utsumi K., Packer L. Damped oscillatory control of mitochondrial respiration and volume. Biochem Biophys Res Commun. 1966 Aug 12;24(3):381–385. doi: 10.1016/0006-291x(66)90168-9. [DOI] [PubMed] [Google Scholar]
  22. Narita M., Shimizu S., Ito T., Chittenden T., Lutz R. J., Matsuda H., Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14681–14686. doi: 10.1073/pnas.95.25.14681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Powers M. F., Beavis A. D. Triorganotins inhibit the mitochondrial inner membrane anion channel. J Biol Chem. 1991 Sep 15;266(26):17250–17256. [PubMed] [Google Scholar]
  24. Raffray M., Cohen G. M. Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch Toxicol. 1993;67(4):231–236. doi: 10.1007/BF01974341. [DOI] [PubMed] [Google Scholar]
  25. SONE N., HAGIHARA B. INHIBITORY ACTION OF TRIALKYLTIN COMPOUNDS ON OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA. J Biochem. 1964 Aug;56:151–156. doi: 10.1093/oxfordjournals.jbchem.a127972. [DOI] [PubMed] [Google Scholar]
  26. Savage M. K., Reed D. J. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling. Arch Biochem Biophys. 1994 Nov 15;315(1):142–152. doi: 10.1006/abbi.1994.1483. [DOI] [PubMed] [Google Scholar]
  27. Schönfeld P., Bohnensack R. Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett. 1997 Dec 29;420(2-3):167–170. doi: 10.1016/s0014-5793(97)01511-1. [DOI] [PubMed] [Google Scholar]
  28. Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
  29. Shimizu S., Tsujimoto Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):577–582. doi: 10.1073/pnas.97.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Siebenlist K. R., Taketa F. Inactivation of yeast hexokinase B by triethyltin bromide and reactivation by dithiothreitol and glucose. Biochemistry. 1983 Sep 27;22(20):4642–4646. doi: 10.1021/bi00289a005. [DOI] [PubMed] [Google Scholar]
  31. Siebenlist K. R., Taketa F. Organotin-protein interactions. Binding of triethyltin bromide to cat haemoglobin. Biochem J. 1986 Jan 15;233(2):471–477. doi: 10.1042/bj2330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stridh H., Gigliotti D., Orrenius S., Cotgreave I. The role of calcium in pre- and postmitochondrial events in tributyltin-induced T-cell apoptosis. Biochem Biophys Res Commun. 1999 Dec 20;266(2):460–465. doi: 10.1006/bbrc.1999.1821. [DOI] [PubMed] [Google Scholar]
  33. Stridh H., Kimland M., Jones D. P., Orrenius S., Hampton M. B. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998 Jun 16;429(3):351–355. doi: 10.1016/s0014-5793(98)00630-9. [DOI] [PubMed] [Google Scholar]
  34. Tatton W. G., Olanow C. W. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta. 1999 Feb 9;1410(2):195–213. doi: 10.1016/s0005-2728(98)00167-4. [DOI] [PubMed] [Google Scholar]
  35. Utsumi T., Okuma M., Kanno T., Takehara Y., Yoshioka T., Fujita Y., Horton A. A., Utsumi K. Effect of the antiretroviral agent hypericin on rat liver mitochondria. Biochem Pharmacol. 1995 Aug 25;50(5):655–662. doi: 10.1016/0006-2952(95)00143-n. [DOI] [PubMed] [Google Scholar]
  36. Vos J. G., De Klerk A., Krajnc E. I., Van Loveren H., Rozing J. Immunotoxicity of bis(tri-n-butyltin)oxide in the rat: effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats. Toxicol Appl Pharmacol. 1990 Aug;105(1):144–155. doi: 10.1016/0041-008x(90)90366-3. [DOI] [PubMed] [Google Scholar]
  37. Vos J. G., de Klerk A., Krajnc E. I., Kruizinga W., van Ommen B., Rozing J. Toxicity of bis(tri-n-butyltin)oxide in the rat. II. Suppression of thymus-dependent immune responses and of parameters of nonspecific resistance after short-term exposure. Toxicol Appl Pharmacol. 1984 Sep 30;75(3):387–408. doi: 10.1016/0041-008x(84)90177-7. [DOI] [PubMed] [Google Scholar]
  38. Zamzami N., Marchetti P., Castedo M., Hirsch T., Susin S. A., Masse B., Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996 Apr 8;384(1):53–57. doi: 10.1016/0014-5793(96)00280-3. [DOI] [PubMed] [Google Scholar]
  39. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES