Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):659–664. doi: 10.1042/0264-6021:3560659

Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype.

K Moulin 1, N Truel 1, M André 1, E Arnauld 1, M Nibbelink 1, B Cousin 1, C Dani 1, L Pénicaud 1, L Casteilla 1
PMCID: PMC1221881  PMID: 11368797

Abstract

In mammals, two types of adipose tissue are present, brown and white. They develop sequentially, as brown fat occurs during late gestation whereas white fat grows mainly after birth. However, both tissues have been shown to have great plasticity. Thus an apparent transformation of brown fat into white fat takes place during post-natal development. This observation raises questions about a possible conversion of brown into white adipocytes during development, although indirect data argue against this hypothesis. To investigate such questions in vivo, we generated two types of transgenic line. The first carried a transgene expressing Cre recombinase specifically in brown adipocytes under the control of the rat UCP1 promoter. The second corresponded to an inactive lacZ gene under the control of the human cytomegalovirus promoter. This dormant gene is inducible by Cre because it contains a Stop sequence between two loxP sequences, separating the promoter from the coding sequence. Adipose tissues of progeny derived by crossing independent lines established from both constructs were investigated. LacZ mRNA corresponding to the activated reporter gene was easily detected in brown fat and not typically in white fat, even by reverse transcriptase PCR experiments. These data represent the first direct experimental proof that, during normal development, most white adipocytes do not derive from brown adipocytes.

Full Text

The Full Text of this article is available as a PDF (233.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailhaud G., Grimaldi P., Négrel R. A molecular view of adipose tissue. Int J Obes Relat Metab Disord. 1992 Dec;16 (Suppl 2):S17–S21. [PubMed] [Google Scholar]
  2. Barlow C., Schroeder M., Lekstrom-Himes J., Kylefjord H., Deng C. X., Wynshaw-Boris A., Spiegelman B. M., Xanthopoulos K. G. Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments. Nucleic Acids Res. 1997 Jun 15;25(12):2543–2545. doi: 10.1093/nar/25.12.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouillaud F., Raimbault S., Ricquier D. The gene for rat uncoupling protein: complete sequence, structure of primary transcript and evolutionary relationship between exons. Biochem Biophys Res Commun. 1988 Dec 15;157(2):783–792. doi: 10.1016/s0006-291x(88)80318-8. [DOI] [PubMed] [Google Scholar]
  4. Cassard-Doulcier A. M., Gelly C., Fox N., Schrementi J., Raimbault S., Klaus S., Forest C., Bouillaud F., Ricquier D. Tissue-specific and beta-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5'-flanking region. Mol Endocrinol. 1993 Apr;7(4):497–506. doi: 10.1210/mend.7.4.8388995. [DOI] [PubMed] [Google Scholar]
  5. Casteilla L., Blondel O., Klaus S., Raimbault S., Diolez P., Moreau F., Bouillaud F., Ricquier D. Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5124–5128. doi: 10.1073/pnas.87.13.5124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casteilla L., Champigny O., Bouillaud F., Robelin J., Ricquier D. Sequential changes in the expression of mitochondrial protein mRNA during the development of brown adipose tissue in bovine and ovine species. Sudden occurrence of uncoupling protein mRNA during embryogenesis and its disappearance after birth. Biochem J. 1989 Feb 1;257(3):665–671. doi: 10.1042/bj2570665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casteilla L., Nouguès J., Reyne Y., Ricquier D. Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium. Importance of glucocorticoids and age of animals. Eur J Biochem. 1991 May 23;198(1):195–199. doi: 10.1111/j.1432-1033.1991.tb16001.x. [DOI] [PubMed] [Google Scholar]
  8. Champigny O., Ricquier D., Blondel O., Mayers R. M., Briscoe M. G., Holloway B. R. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10774–10777. doi: 10.1073/pnas.88.23.10774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Cohen-Tannoudji M., Babinet C. Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod. 1998 Oct;4(10):929–938. doi: 10.1093/molehr/4.10.929. [DOI] [PubMed] [Google Scholar]
  11. Cousin B., Bascands-Viguerie N., Kassis N., Nibbelink M., Ambid L., Casteilla L., Pénicaud L. Cellular changes during cold acclimatation in adipose tissues. J Cell Physiol. 1996 May;167(2):285–289. doi: 10.1002/(SICI)1097-4652(199605)167:2<285::AID-JCP12>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  12. Cousin B., Cinti S., Morroni M., Raimbault S., Ricquier D., Pénicaud L., Casteilla L. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992 Dec;103(Pt 4):931–942. doi: 10.1242/jcs.103.4.931. [DOI] [PubMed] [Google Scholar]
  13. Gemmell R. T., Bell A. W., Alexander G. Morphology of adipose cells in lambs at birth and during subsequent transition of brown to white adipose tissue in cold and in warm conditons. Am J Anat. 1972 Feb;133(2):143–164. doi: 10.1002/aja.1001330203. [DOI] [PubMed] [Google Scholar]
  14. Herrera P. L., Orci L., Vassalli J. D. Two transgenic approaches to define the cell lineages in endocrine pancreas development. Mol Cell Endocrinol. 1998 May 25;140(1-2):45–50. doi: 10.1016/s0303-7207(98)00028-8. [DOI] [PubMed] [Google Scholar]
  15. Herron D., Rehnmark S., Néchad M., Loncar D., Cannon B., Nedergaard J. Norepinephrine-induced synthesis of the uncoupling protein thermogenin (UCP) and its mitochondrial targeting in brown adipocytes differentiated in culture. FEBS Lett. 1990 Jul 30;268(1):296–300. doi: 10.1016/0014-5793(90)81031-i. [DOI] [PubMed] [Google Scholar]
  16. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 1990 Aug;4(11):2890–2898. [PubMed] [Google Scholar]
  17. Jiang X., Rowitch D. H., Soriano P., McMahon A. P., Sucov H. M. Fate of the mammalian cardiac neural crest. Development. 2000 Apr;127(8):1607–1616. doi: 10.1242/dev.127.8.1607. [DOI] [PubMed] [Google Scholar]
  18. Klaus S. Functional differentiation of white and brown adipocytes. Bioessays. 1997 Mar;19(3):215–223. doi: 10.1002/bies.950190307. [DOI] [PubMed] [Google Scholar]
  19. Kopecký J., Baudysová M., Zanotti F., Janíková D., Pavelka S., Houstek J. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture. J Biol Chem. 1990 Dec 25;265(36):22204–22209. [PubMed] [Google Scholar]
  20. Lakso M., Sauer B., Mosinger B., Jr, Lee E. J., Manning R. W., Yu S. H., Mulder K. L., Westphal H. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6232–6236. doi: 10.1073/pnas.89.14.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Loncar D. Convertible adipose tissue in mice. Cell Tissue Res. 1991 Oct;266(1):149–161. doi: 10.1007/BF00678721. [DOI] [PubMed] [Google Scholar]
  22. Postic C., Shiota M., Niswender K. D., Jetton T. L., Chen Y., Moates J. M., Shelton K. D., Lindner J., Cherrington A. D., Magnuson M. A. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem. 1999 Jan 1;274(1):305–315. doi: 10.1074/jbc.274.1.305. [DOI] [PubMed] [Google Scholar]
  23. Ricquier D., Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000 Jan 15;345(Pt 2):161–179. [PMC free article] [PubMed] [Google Scholar]
  24. Ricquier D., Casteilla L., Bouillaud F. Molecular studies of the uncoupling protein. FASEB J. 1991 Jun;5(9):2237–2242. doi: 10.1096/fasebj.5.9.1860614. [DOI] [PubMed] [Google Scholar]
  25. Rosen E. D., Walkey C. J., Puigserver P., Spiegelman B. M. Transcriptional regulation of adipogenesis. Genes Dev. 2000 Jun 1;14(11):1293–1307. [PubMed] [Google Scholar]
  26. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods. 1998 Apr;14(4):381–392. doi: 10.1006/meth.1998.0593. [DOI] [PubMed] [Google Scholar]
  27. Spiegelman B. M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998 Apr;47(4):507–514. doi: 10.2337/diabetes.47.4.507. [DOI] [PubMed] [Google Scholar]
  28. Sternberg N., Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981 Aug 25;150(4):467–486. doi: 10.1016/0022-2836(81)90375-2. [DOI] [PubMed] [Google Scholar]
  29. Viguerie-Bascands N., Bousquet-Mélou A., Galitzky J., Larrouy D., Ricquier D., Berlan M., Casteilla L. Evidence for numerous brown adipocytes lacking functional beta 3-adrenoceptors in fat pads from nonhuman primates. J Clin Endocrinol Metab. 1996 Jan;81(1):368–375. doi: 10.1210/jcem.81.1.8550779. [DOI] [PubMed] [Google Scholar]
  30. Young P., Arch J. R., Ashwell M. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 1984 Feb 13;167(1):10–14. doi: 10.1016/0014-5793(84)80822-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES