Abstract
The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderberg S. J. Topological disposition of lysine 943 in native Na+/K(+)-transporting ATPase. Biochemistry. 1995 Jul 25;34(29):9508–9516. doi: 10.1021/bi00029a027. [DOI] [PubMed] [Google Scholar]
- Antolovic R., Linder D., Hahnen J., Schoner W. Affinity labeling of a sulfhydryl group in the cardiacglycoside receptor site of Na+/K(+)-ATPase by N-hydroxysuccinimidyl derivatives of digoxigenin. Eur J Biochem. 1995 Jan 15;227(1-2):61–67. doi: 10.1111/j.1432-1033.1995.tb20359.x. [DOI] [PubMed] [Google Scholar]
- Antolovic R., Schoner W., Geering K., Canessa C., Rossier B. C., Horisberger J. D. Labeling of a cysteine in the cardiotonic glycoside binding site by the steroid derivative HDMA. FEBS Lett. 1995 Jul 10;368(1):169–172. doi: 10.1016/0014-5793(95)00637-o. [DOI] [PubMed] [Google Scholar]
- Arystarkhova E., Gasparian M., Modyanov N. N., Sweadner K. J. Na,K-ATPase extracellular surface probed with a monoclonal antibody that enhances ouabain binding. J Biol Chem. 1992 Jul 5;267(19):13694–13701. [PubMed] [Google Scholar]
- Arystarkhova E., Gibbons D. L., Sweadner K. J. Topology of the Na,K-ATPase. Evidence for externalization of a labile transmembrane structure during heating. J Biol Chem. 1995 Apr 14;270(15):8785–8796. doi: 10.1074/jbc.270.15.8785. [DOI] [PubMed] [Google Scholar]
- Arystarkhova E., Sweadner K. J. Isoform-specific monoclonal antibodies to Na,K-ATPase alpha subunits. Evidence for a tissue-specific post-translational modification of the alpha subunit. J Biol Chem. 1996 Sep 20;271(38):23407–23417. doi: 10.1074/jbc.271.38.23407. [DOI] [PubMed] [Google Scholar]
- Asahi M., Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J Biol Chem. 1999 Nov 12;274(46):32855–32862. doi: 10.1074/jbc.274.46.32855. [DOI] [PubMed] [Google Scholar]
- Asano S., Matsuda S., Hoshina S., Sakamoto S., Takeguchi N. A chimeric gastric H+,K+-ATPase inhibitable with both ouabain and SCH 28080. J Biol Chem. 1999 Mar 12;274(11):6848–6854. doi: 10.1074/jbc.274.11.6848. [DOI] [PubMed] [Google Scholar]
- Auer M., Scarborough G. A., Kühlbrandt W. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature. 1998 Apr 23;392(6678):840–843. doi: 10.1038/33967. [DOI] [PubMed] [Google Scholar]
- Axelsen K. B., Palmgren M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol. 1998 Jan;46(1):84–101. doi: 10.1007/pl00006286. [DOI] [PubMed] [Google Scholar]
- Besancon M., Shin J. M., Mercier F., Munson K., Miller M., Hersey S., Sachs G. Membrane topology and omeprazole labeling of the gastric H+,K(+)-adenosinetriphosphatase. Biochemistry. 1993 Mar 9;32(9):2345–2355. doi: 10.1021/bi00060a028. [DOI] [PubMed] [Google Scholar]
- Besancon M., Simon A., Sachs G., Shin J. M. Sites of reaction of the gastric H,K-ATPase with extracytoplasmic thiol reagents. J Biol Chem. 1997 Sep 5;272(36):22438–22446. doi: 10.1074/jbc.272.36.22438. [DOI] [PubMed] [Google Scholar]
- Blostein R., Zhang R., Gottardi C. J., Caplan M. J. Functional properties of an H,K-ATPase/Na,K-ATPase chimera. J Biol Chem. 1993 May 15;268(14):10654–10658. [PubMed] [Google Scholar]
- Bull L. N., van Eijk M. J., Pawlikowska L., DeYoung J. A., Juijn J. A., Liao M., Klomp L. W., Lomri N., Berger R., Scharschmidt B. F. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet. 1998 Mar;18(3):219–224. doi: 10.1038/ng0398-219. [DOI] [PubMed] [Google Scholar]
- Burns E. L., Nicholas R. A., Price E. M. Random mutagenesis of the sheep Na,K-ATPase alpha1 subunit generating the ouabain-resistant mutant L793P. J Biol Chem. 1996 Jul 5;271(27):15879–15883. doi: 10.1074/jbc.271.27.15879. [DOI] [PubMed] [Google Scholar]
- Burns E. L., Price E. M. Random mutagenesis of the sheep Na,K-ATPase alpha-1 subunit generates a novel T797N mutation that results in a ouabain-resistant enzyme. J Biol Chem. 1993 Dec 5;268(34):25632–25635. [PubMed] [Google Scholar]
- Béguin P., Hasler U., Beggah A., Horisberger J. D., Geering K. Membrane integration of Na,K-ATPase alpha-subunits and beta-subunit assembly. J Biol Chem. 1998 Sep 18;273(38):24921–24931. doi: 10.1074/jbc.273.38.24921. [DOI] [PubMed] [Google Scholar]
- Béguin P., Hasler U., Staub O., Geering K. Endoplasmic reticulum quality control of oligomeric membrane proteins: topogenic determinants involved in the degradation of the unassembled Na,K-ATPase alpha subunit and in its stabilization by beta subunit assembly. Mol Biol Cell. 2000 May;11(5):1657–1672. doi: 10.1091/mbc.11.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa C. M., Horisberger J. D., Louvard D., Rossier B. C. Mutation of a cysteine in the first transmembrane segment of Na,K-ATPase alpha subunit confers ouabain resistance. EMBO J. 1992 May;11(5):1681–1687. doi: 10.1002/j.1460-2075.1992.tb05218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa C. M., Horisberger J. D., Rossier B. C. Mutation of a tyrosine in the H3-H4 ectodomain of Na,K-ATPase alpha subunit confers ouabain resistance. J Biol Chem. 1993 Aug 25;268(24):17722–17726. [PubMed] [Google Scholar]
- Canfield V. A., Levenson R. Transmembrane organization of the Na,K-ATPase determined by epitope addition. Biochemistry. 1993 Dec 21;32(50):13782–13786. doi: 10.1021/bi00213a005. [DOI] [PubMed] [Google Scholar]
- Canfield V. A., Norbeck L., Levenson R. Localization of cytoplasmic and extracellular domains of Na,K-ATPase by epitope tag insertion. Biochemistry. 1996 Nov 12;35(45):14165–14172. doi: 10.1021/bi961851f. [DOI] [PubMed] [Google Scholar]
- Capasso J. M., Hoving S., Tal D. M., Goldshleger R., Karlish S. J. Extensive digestion of Na+,K(+)-ATPase by specific and nonspecific proteases with preservation of cation occlusion sites. J Biol Chem. 1992 Jan 15;267(2):1150–1158. [PubMed] [Google Scholar]
- Catty P., de Kerchove d'Exaerde A., Goffeau A. The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett. 1997 Jun 16;409(3):325–332. doi: 10.1016/s0014-5793(97)00446-8. [DOI] [PubMed] [Google Scholar]
- Champeil P., Menguy T., Soulié S., Juul B., de Gracia A. G., Rusconi F., Falson P., Denoroy L., Henao F., le Maire M. Characterization of a protease-resistant domain of the cytosolic portion of sarcoplasmic reticulum Ca2+-ATPase. Nucleotide- and metal-binding sites. J Biol Chem. 1998 Mar 20;273(12):6619–6631. doi: 10.1074/jbc.273.12.6619. [DOI] [PubMed] [Google Scholar]
- Colonna T. E., Huynh L., Fambrough D. M. Subunit interactions in the Na,K-ATPase explored with the yeast two-hybrid system. J Biol Chem. 1997 May 9;272(19):12366–12372. doi: 10.1074/jbc.272.19.12366. [DOI] [PubMed] [Google Scholar]
- Croyle M. L., Woo A. L., Lingrel J. B. Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity--implications for ouabain binding. Eur J Biochem. 1997 Sep 1;248(2):488–495. doi: 10.1111/j.1432-1033.1997.00488.x. [DOI] [PubMed] [Google Scholar]
- Devarajan P., Scaramuzzino D. A., Morrow J. S. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2965–2969. doi: 10.1073/pnas.91.8.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnet C., Arystarkhova E., Sweadner K. J. Thermal denaturation of the Na,K-ATPase provides evidence for alpha-alpha oligomeric interaction and gamma subunit association with the C-terminal domain. J Biol Chem. 2000 Nov 30;276(10):7357–7365. doi: 10.1074/jbc.M009131200. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Farley R. A., Heart E., Kabalin M., Putnam D., Wang K., Kasho V. N., Faller L. D. Site-directed mutagenesis of the sodium pump: analysis of mutations to amino acids in the proposed nucleotide binding site by stable oxygen isotope exchange. Biochemistry. 1997 Jan 28;36(4):941–951. doi: 10.1021/bi962153y. [DOI] [PubMed] [Google Scholar]
- Farley R. A., Schreiber S., Wang S. G., Scheiner-Bobis G. A hybrid between Na+,K+-ATPase and H+,K+-ATPase is sensitive to palytoxin, ouabain, and SCH 28080. J Biol Chem. 2000 Oct 27;276(4):2608–2615. doi: 10.1074/jbc.M008784200. [DOI] [PubMed] [Google Scholar]
- Felsenfeld D. P., Sweadner K. J. Fine specificity mapping and topography of an isozyme-specific epitope of the Na,K-ATPase catalytic subunit. J Biol Chem. 1988 Aug 5;263(22):10932–10942. [PubMed] [Google Scholar]
- Ferrandi M., Salardi S., Tripodi G., Barassi P., Rivera R., Manunta P., Goldshleger R., Ferrari P., Bianchi G., Karlish S. J. Evidence for an interaction between adducin and Na(+)-K(+)-ATPase: relation to genetic hypertension. Am J Physiol. 1999 Oct;277(4 Pt 2):H1338–H1349. doi: 10.1152/ajpheart.1999.277.4.H1338. [DOI] [PubMed] [Google Scholar]
- Fiedler B., Scheiner-Bobis G. Transmembrane topology of alpha- and beta-subunits of Na+,K+-ATPase derived from beta-galactosidase fusion proteins expressed in yeast. J Biol Chem. 1996 Nov 15;271(46):29312–29320. doi: 10.1074/jbc.271.46.29312. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatto C., Lutsenko S., Shin J. M., Sachs G., Kaplan J. H. Stabilization of the H,K-ATPase M5M6 membrane hairpin by K+ ions. Mechanistic significance for p2-type atpases. J Biol Chem. 1999 May 14;274(20):13737–13740. doi: 10.1074/jbc.274.20.13737. [DOI] [PubMed] [Google Scholar]
- Gatto C., Wang A. X., Kaplan J. H. The M4M5 cytoplasmic loop of the Na,K-ATPase, overexpressed in Escherichia coli, binds nucleoside triphosphates with the same selectivity as the intact native protein. J Biol Chem. 1998 Apr 24;273(17):10578–10585. doi: 10.1074/jbc.273.17.10578. [DOI] [PubMed] [Google Scholar]
- Goldshleger R., Karlish S. J. Fe-catalyzed cleavage of the alpha subunit of Na/K-ATPase: evidence for conformation-sensitive interactions between cytoplasmic domains. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9596–9601. doi: 10.1073/pnas.94.18.9596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldshleger R., Karlish S. J. The energy transduction mechanism of Na,K-ATPase studied with iron-catalyzed oxidative cleavage. J Biol Chem. 1999 Jun 4;274(23):16213–16221. doi: 10.1074/jbc.274.23.16213. [DOI] [PubMed] [Google Scholar]
- Goldshleger R., Tal D. M., Karlish S. J. Topology of the alpha-subunit of Na,K-ATPase based on proteolysis. Lability of the topological organization. Biochemistry. 1995 Jul 11;34(27):8668–8679. doi: 10.1021/bi00027a016. [DOI] [PubMed] [Google Scholar]
- Green N. M. ATP-driven cation pumps: alignment of sequences. Biochem Soc Trans. 1989 Dec;17(6):972–972. doi: 10.1042/bst0170972. [DOI] [PubMed] [Google Scholar]
- Guennoun S., Horisberger J. D. Structure of the 5th transmembrane segment of the Na,K-ATPase alpha subunit: a cysteine-scanning mutagenesis study. FEBS Lett. 2000 Sep 29;482(1-2):144–148. doi: 10.1016/s0014-5793(00)02050-0. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halleck M. S., Pradhan D., Blackman C., Berkes C., Williamson P., Schlegel R. A. Multiple members of a third subfamily of P-type ATPases identified by genomic sequences and ESTs. Genome Res. 1998 Apr;8(4):354–361. doi: 10.1101/gr.8.4.354. [DOI] [PubMed] [Google Scholar]
- Hu Y. K., Eisses J. F., Kaplan J. H. Expression of an active Na,K-ATPase with an alpha-subunit lacking all twenty-three native cysteine residues. J Biol Chem. 2000 Sep 29;275(39):30734–30739. doi: 10.1074/jbc.M003737200. [DOI] [PubMed] [Google Scholar]
- Hu Y. K., Kaplan J. H. Site-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na,K-ATPase alpha-subunit. J Biol Chem. 2000 Jun 23;275(25):19185–19191. doi: 10.1074/jbc.M000641200. [DOI] [PubMed] [Google Scholar]
- Huang W. H., Askari A. (Na+ + K+)-ATPase: effects of detergents on the cross-linking of subunits in the presence of Cu2+ and o-phenanthroline. Biochim Biophys Acta. 1979 Jun 19;578(2):547–552. doi: 10.1016/0005-2795(79)90186-7. [DOI] [PubMed] [Google Scholar]
- Ishii T., Lemas M. V., Takeyasu K. Na(+)-, ouabain-, Ca(2+)-, and thapsigargin-sensitive ATPase activity expressed in chimeras between the calcium and the sodium pump alpha subunits. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6103–6107. doi: 10.1073/pnas.91.13.6103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivanov A., Askari A., Modyanov N. N. Structural analysis of the products of chymotryptic cleavage of the E1 form of Na,K-ATPase alpha-subunit: identification of the N-terminal fragments containing the transmembrane H1-H2 domain. FEBS Lett. 1997 Dec 22;420(1):107–111. doi: 10.1016/s0014-5793(97)01493-2. [DOI] [PubMed] [Google Scholar]
- Ivanov A., Zhao H., Modyanov N. N. Packing of the transmembrane helices of Na,K-ATPase: direct contact between beta-subunit and H8 segment of alpha-subunit revealed by oxidative cross-linking. Biochemistry. 2000 Aug 15;39(32):9778–9785. doi: 10.1021/bi001004j. [DOI] [PubMed] [Google Scholar]
- James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989 Nov 2;342(6245):90–92. doi: 10.1038/342090a0. [DOI] [PubMed] [Google Scholar]
- Jordan C., Püschel B., Koob R., Drenckhahn D. Identification of a binding motif for ankyrin on the alpha-subunit of Na+,K(+)-ATPase. J Biol Chem. 1995 Dec 15;270(50):29971–29975. doi: 10.1074/jbc.270.50.29971. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L., Nielsen J. M., Rasmussen J. H., Pedersen P. A. Structure-function relationships of E1-E2 transitions and cation binding in Na,K-pump protein. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):65–70. doi: 10.1016/s0005-2728(98)00043-7. [DOI] [PubMed] [Google Scholar]
- Juul B., Turc H., Durand M. L., Gomez de Gracia A., Denoroy L., Møller J. V., Champeil P., le Maire M. Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca(2+)-ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K? J Biol Chem. 1995 Aug 25;270(34):20123–20134. doi: 10.1074/jbc.270.34.20123. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L., Collins J. H. Tryptic and chymotryptic cleavage sites in sequence of alpha-subunit of (Na+ + K+)-ATPase from outer medulla of mammalian kidney. Biochim Biophys Acta. 1986 Sep 11;860(3):570–576. doi: 10.1016/0005-2736(86)90555-9. [DOI] [PubMed] [Google Scholar]
- Karlish S. J., Goldshleger R., Jørgensen P. L. Location of Asn831 of the alpha chain of Na/K-ATPase at the cytoplasmic surface. Implication for topological models. J Biol Chem. 1993 Feb 15;268(5):3471–3478. [PubMed] [Google Scholar]
- Karlish S. J., Goldshleger R., Stein W. D. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4566–4570. doi: 10.1073/pnas.87.12.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasho V. N., Stengelin M., Smirnova I. N., Faller L. D. A proposal for the Mg2+ binding site of P-type ion motive ATPases and the mechanism of phosphoryl group transfer. Biochemistry. 1997 Jul 1;36(26):8045–8052. doi: 10.1021/bi970472z. [DOI] [PubMed] [Google Scholar]
- Koenderink J. B., Hermsen H. P., Swarts H. G., Willems P. H., De Pont J. J. High-affinity ouabain binding by a chimeric gastric H+,K+-ATPase containing transmembrane hairpins M3-M4 and M5-M6 of the alpha 1-subunit of rat Na+,K+-ATPase. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11209–11214. doi: 10.1073/pnas.200109597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kühlbrandt W., Auer M., Scarborough G. A. Structure of the P-type ATPases. Curr Opin Struct Biol. 1998 Aug;8(4):510–516. doi: 10.1016/s0959-440x(98)80130-9. [DOI] [PubMed] [Google Scholar]
- Lambrecht N., Corbett Z., Bayle D., Karlish S. J., Sachs G. Identification of the site of inhibition by omeprazole of a alpha-beta fusion protein of the H,K-ATPase using site-directed mutagenesis. J Biol Chem. 1998 May 29;273(22):13719–13728. doi: 10.1074/jbc.273.22.13719. [DOI] [PubMed] [Google Scholar]
- Lambrecht N., Munson K., Vagin O., Sachs G. Comparison of covalent with reversible inhibitor binding sites of the gastric H,K-ATPase by site-directed mutagenesis. J Biol Chem. 2000 Feb 11;275(6):4041–4048. doi: 10.1074/jbc.275.6.4041. [DOI] [PubMed] [Google Scholar]
- Lane L. K. Functional expression of rat alpha 1 Na,K-ATPase containing substitutions for cysteines 454, 458, 459, 513 and 551. Biochem Mol Biol Int. 1993 Dec;31(5):817–822. [PubMed] [Google Scholar]
- Lee A. G., East J. M. What the structure of a calcium pump tells us about its mechanism. Biochem J. 2001 Jun 15;356(Pt 3):665–683. doi: 10.1042/0264-6021:3560665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K., Guidotti G. Residue leu973 of the rat alpha1 subunit of the Na,K-ATPase is located on the cytoplasmic side of the plasma membrane. Biochem Biophys Res Commun. 1998 Oct 29;251(3):693–698. doi: 10.1006/bbrc.1998.9534. [DOI] [PubMed] [Google Scholar]
- Liu L., Askari A. Evidence for the existence of two ATP-sensitive Rb+ occlusion pockets within the transmembrane domains of Na+/K+-ATPase. J Biol Chem. 1997 May 30;272(22):14380–14386. doi: 10.1074/jbc.272.22.14380. [DOI] [PubMed] [Google Scholar]
- Lutsenko S., Anderko R., Kaplan J. H. Membrane disposition of the M5-M6 hairpin of Na+,K(+)-ATPase alpha subunit is ligand dependent. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7936–7940. doi: 10.1073/pnas.92.17.7936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutsenko S., Daoud S., Kaplan J. H. Identification of two conformationally sensitive cysteine residues at the extracellular surface of the Na,K-ATPase alpha-subunit. J Biol Chem. 1997 Feb 21;272(8):5249–5255. doi: 10.1074/jbc.272.8.5249. [DOI] [PubMed] [Google Scholar]
- Lutsenko S., Kaplan J. H. Molecular events in close proximity to the membrane associated with the binding of ligands to the Na,K-ATPase. J Biol Chem. 1994 Feb 11;269(6):4555–4564. [PubMed] [Google Scholar]
- Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
- Lyu R. M., Farley R. A. Amino acids Val115-Ile126 of rat gastric H(+)-K(+)-ATPase confer high affinity for Sch-28080 to Na(+)-K(+)-ATPase. Am J Physiol. 1997 May;272(5 Pt 1):C1717–C1725. doi: 10.1152/ajpcell.1997.272.5.C1717. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Green N. M. Structural biology. Pumping ions. Nature. 2000 Jun 8;405(6787):633–634. doi: 10.1038/35015206. [DOI] [PubMed] [Google Scholar]
- McIntosh D. B. Glutaraldehyde cross-links Lys-492 and Arg-678 at the active site of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Nov 5;267(31):22328–22335. [PubMed] [Google Scholar]
- Melle-Milovanovic D., Milovanovic M., Nagpal S., Sachs G., Shin J. M. Regions of association between the alpha and the beta subunit of the gastric H,K-ATPase. J Biol Chem. 1998 May 1;273(18):11075–11081. doi: 10.1074/jbc.273.18.11075. [DOI] [PubMed] [Google Scholar]
- Mercier F., Bayle D., Besancon M., Joys T., Shin J. M., Lewin M. J., Prinz C., Reuben M. A., Soumarmon A., Wong H. Antibody epitope mapping of the gastric H+/K(+)-ATPase. Biochim Biophys Acta. 1993 Jun 18;1149(1):151–165. doi: 10.1016/0005-2736(93)90036-y. [DOI] [PubMed] [Google Scholar]
- Middleton D. A., Rankin S., Esmann M., Watts A. Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13602–13607. doi: 10.1073/pnas.250471997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohraz M., Arystarkhova E., Sweadner K. J. Immunoelectron microscopy of epitopes on Na,K-ATPase catalytic subunit. Implications for the transmembrane organization of the C-terminal domain. J Biol Chem. 1994 Jan 28;269(4):2929–2936. [PubMed] [Google Scholar]
- Moller J. V., Ning G., Maunsbach A. B., Fujimoto K., Asai K., Juul B., Lee Y. J., Gomez de Gracia A., Falson P., le Maire M. Probing of the membrane topology of sarcoplasmic reticulum Ca2+-ATPase with sequence-specific antibodies. Evidence for plasticity of the c-terminal domain. J Biol Chem. 1997 Nov 14;272(46):29015–29032. doi: 10.1074/jbc.272.46.29015. [DOI] [PubMed] [Google Scholar]
- Moutin M. J., Rapin C., Miras R., Vinçon M., Dupont Y., McIntosh D. B. Autonomous folding of the recombinant large cytoplasmic loop of sarcoplasmic reticulum Ca2+-ATPase probed by affinity labeling and trypsin digestion. Eur J Biochem. 1998 Feb 1;251(3):682–690. doi: 10.1046/j.1432-1327.1998.2510682.x. [DOI] [PubMed] [Google Scholar]
- Munson K. B., Gutierrez C., Balaji V. N., Ramnarayan K., Sachs G. Identification of an extracytoplasmic region of H+,K(+)-ATPase labeled by a K(+)-competitive photoaffinity inhibitor. J Biol Chem. 1991 Oct 5;266(28):18976–18988. [PubMed] [Google Scholar]
- Munson K., Lambrecht N., Shin J. M., Sachs G. Analysis of the membrane domain of the gastric H(+)/K(+)-ATPase. J Exp Biol. 2000 Jan;203(Pt 1):161–170. doi: 10.1242/jeb.203.1.161. [DOI] [PubMed] [Google Scholar]
- Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
- Ning G., Maunsbach A. B., Lee Y. J., Møller J. V. Topology of Na,K-ATPase alpha subunit epitopes analyzed with oligopeptide-specific antibodies and double-labeling immunoelectron microscopy. FEBS Lett. 1993 Dec 28;336(3):521–524. doi: 10.1016/0014-5793(93)80868-u. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Stokes D. L., Sasabe H., Toyoshima C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophys J. 1998 Jul;75(1):41–52. doi: 10.1016/S0006-3495(98)77493-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Or E., Goldshleger R., Karlish S. J. Characterization of disulfide cross-links between fragments of proteolyzed Na,K-ATPase. Implications for spatial organization of trans-membrane helices. J Biol Chem. 1999 Jan 29;274(5):2802–2809. doi: 10.1074/jbc.274.5.2802. [DOI] [PubMed] [Google Scholar]
- Or E., Goldshleger R., Shainskaya A., Karlish S. J. Specific cross-links between fragments of proteolyzed Na,K-ATPase induced by o-phthalaldehyde. Biochemistry. 1998 Jun 2;37(22):8197–8207. doi: 10.1021/bi9730442. [DOI] [PubMed] [Google Scholar]
- Ovchinnikov YuA, Luneva N. M., Arystarkhova E. A., Gevondyan N. M., Arzamazova N. M., Kozhich A. T., Nesmeyanov V. A., Modyanov N. N. Topology of Na+,K+-ATPase. Identification of the extra- and intracellular hydrophilic loops of the catalytic subunit by specific antibodies. FEBS Lett. 1988 Jan 25;227(2):230–234. doi: 10.1016/0014-5793(88)80904-9. [DOI] [PubMed] [Google Scholar]
- Palasis M., Kuntzweiler T. A., Argüello J. M., Lingrel J. B. Ouabain interactions with the H5-H6 hairpin of the Na,K-ATPase reveal a possible inhibition mechanism via the cation binding domain. J Biol Chem. 1996 Jun 14;271(24):14176–14182. doi: 10.1074/jbc.271.24.14176. [DOI] [PubMed] [Google Scholar]
- Palmgren M. G., Axelsen K. B. Evolution of P-type ATPases. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):37–45. doi: 10.1016/s0005-2728(98)00041-3. [DOI] [PubMed] [Google Scholar]
- Patchornik G., Goldshleger R., Karlish S. J. The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATP-Mg(2+) sites of Na,K-ATPase: altered ligation of Fe(2+) (Mg(2+)) ions accompanies the E(1)-->E(2) conformational change. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11954–11959. doi: 10.1073/pnas.220332897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen P. A., Jorgensen J. R., Jorgensen P. L. Importance of conserved alpha -subunit segment 709GDGVND for Mg2+ binding, phosphorylation, and energy transduction in Na,K-ATPase. J Biol Chem. 2000 Dec 1;275(48):37588–37595. doi: 10.1074/jbc.M005610200. [DOI] [PubMed] [Google Scholar]
- Penniston J. T., Enyedi A. Modulation of the plasma membrane Ca2+ pump. J Membr Biol. 1998 Sep 15;165(2):101–109. doi: 10.1007/s002329900424. [DOI] [PubMed] [Google Scholar]
- Periyasamy S. M., Huang W. H., Askari A. Subunit associations of (Na+ + K+)-dependent adenosine triphosphatase. Chemical cross-linking studies. J Biol Chem. 1983 Aug 25;258(16):9878–9885. [PubMed] [Google Scholar]
- Price E. M., Lingrel J. B. Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry. 1988 Nov 1;27(22):8400–8408. doi: 10.1021/bi00422a016. [DOI] [PubMed] [Google Scholar]
- Price E. M., Rice D. A., Lingrel J. B. Site-directed mutagenesis of a conserved, extracellular aspartic acid residue affects the ouabain sensitivity of sheep Na,K-ATPase. J Biol Chem. 1989 Dec 25;264(36):21902–21906. [PubMed] [Google Scholar]
- Raussens V., Ruysschaert J. M., Goormaghtigh E. Fourier transform infrared spectroscopy study of the secondary structure of the gastric H+,K+-ATPase and of its membrane-associated proteolytic peptides. J Biol Chem. 1997 Jan 3;272(1):262–270. doi: 10.1074/jbc.272.1.262. [DOI] [PubMed] [Google Scholar]
- Repke K. R., Sweadner K. J., Weiland J., Megges R., Schön R. In search of ideal inotropic steroids: recent progress. Prog Drug Res. 1996;47:9–52. doi: 10.1007/978-3-0348-8998-8_1. [DOI] [PubMed] [Google Scholar]
- Rice W. J., Green N. M., MacLennan D. H. Site-directed disulfide mapping of helices M4 and M6 in the Ca2+ binding domain of SERCA1a, the Ca2+ ATPase of fast twitch skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1997 Dec 12;272(50):31412–31419. doi: 10.1074/jbc.272.50.31412. [DOI] [PubMed] [Google Scholar]
- Ross D. C., McIntosh D. B. Intramolecular cross-linking at the active site of the Ca2+-ATPase of sarcoplasmic reticulum. High and low affinity nucleotide binding and evidence of active site closure in E2-P. J Biol Chem. 1987 Sep 25;262(27):12977–12983. [PubMed] [Google Scholar]
- Sarvazyan N. A., Ivanov A., Modyanov N. N., Askari A. Ligand-sensitive interactions among the transmembrane helices of Na+/K+-ATPase. J Biol Chem. 1997 Mar 21;272(12):7855–7858. doi: 10.1074/jbc.272.12.7855. [DOI] [PubMed] [Google Scholar]
- Sarvazyan N. A., Modyanov N. N., Askari A. Intersubunit and intrasubunit contact regions of Na+/K(+)-ATPase revealed by controlled proteolysis and chemical cross-linking. J Biol Chem. 1995 Nov 3;270(44):26528–26532. doi: 10.1074/jbc.270.44.26528. [DOI] [PubMed] [Google Scholar]
- Satoh K., Nakao T., Nagai F., Kano I., Nakagawa A., Ushiyama K., Urayama O., Hara Y., Nakao M. A monoclonal antibody against horse kidney (Na+ + K+)-ATPase inhibits sodium pump and E2K to E1 conversion of (Na+ + K+)-ATPase from outside of the cell membrane. Biochim Biophys Acta. 1989 Feb 2;994(2):104–113. doi: 10.1016/0167-4838(89)90149-0. [DOI] [PubMed] [Google Scholar]
- Scarborough G. A. Structure and function of the P-type ATPases. Curr Opin Cell Biol. 1999 Aug;11(4):517–522. doi: 10.1016/S0955-0674(99)80075-1. [DOI] [PubMed] [Google Scholar]
- Schneider H., Scheiner-Bobis G. Involvement of the M7/M8 extracellular loop of the sodium pump alpha subunit in ion transport. Structural and functional homology to P-loops of ion channels. J Biol Chem. 1997 Jun 27;272(26):16158–16165. doi: 10.1074/jbc.272.26.16158. [DOI] [PubMed] [Google Scholar]
- Schultheis P. J., Lingrel J. B. Substitution of transmembrane residues with hydrogen-bonding potential in the alpha subunit of Na,K-ATPase reveals alterations in ouabain sensitivity. Biochemistry. 1993 Jan 19;32(2):544–550. doi: 10.1021/bi00053a020. [DOI] [PubMed] [Google Scholar]
- Schultheis P. J., Wallick E. T., Lingrel J. B. Kinetic analysis of ouabain binding to native and mutated forms of Na,K-ATPase and identification of a new region involved in cardiac glycoside interactions. J Biol Chem. 1993 Oct 25;268(30):22686–22694. [PubMed] [Google Scholar]
- Scully R. R., Pressley T. A., O'Neil R. G. A site-directed antibody recognizes a component of the ouabain-binding domain of the alpha 1 subunit of rat Na+,K(+)-ATPase. Biochem Cell Biol. 1993 Nov-Dec;71(11-12):538–543. doi: 10.1139/o93-077. [DOI] [PubMed] [Google Scholar]
- Shainskaya A., Karlish S. J. Chymotryptic digestion of the cytoplasmic domain of the beta subunit of Na/K-ATPase alters kinetics of occlusion of Rb+ ions. J Biol Chem. 1996 Apr 26;271(17):10309–10316. doi: 10.1074/jbc.271.17.10309. [DOI] [PubMed] [Google Scholar]
- Shainskaya A., Karlish S. J. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments. J Biol Chem. 1994 Apr 8;269(14):10780–10789. [PubMed] [Google Scholar]
- Shainskaya A., Nesaty V., Karlish S. J. Interactions between fragments of trypsinized Na,K-ATPase detected by thermal inactivation of Rb+ occlusion and dissociation of the M5/M6 fragment. J Biol Chem. 1998 Mar 27;273(13):7311–7319. doi: 10.1074/jbc.273.13.7311. [DOI] [PubMed] [Google Scholar]
- Shainskaya A., Schneeberger A., Apell H. J., Karlish S. J. Entrance port for Na(+) and K(+) ions on Na(+),K(+)-ATPase in the cytoplasmic loop between trans-membrane segments M6 and M7 of the alpha subunit. Proximity Of the cytoplasmic segment of the beta subunit. J Biol Chem. 2000 Jan 21;275(3):2019–2028. doi: 10.1074/jbc.275.3.2019. [DOI] [PubMed] [Google Scholar]
- Shi H. G., Mikhaylova L., Zichittella A. E., Argüello J. M. Functional role of cysteine residues in the (Na,K)-ATPase alpha subunit. Biochim Biophys Acta. 2000 Apr 5;1464(2):177–187. doi: 10.1016/s0005-2736(99)00245-x. [DOI] [PubMed] [Google Scholar]
- Shimon M. B., Goldshleger R., Karlish S. J. Specific Cu2+-catalyzed oxidative cleavage of Na,K-ATPase at the extracellular surface. J Biol Chem. 1998 Dec 18;273(51):34190–34195. doi: 10.1074/jbc.273.51.34190. [DOI] [PubMed] [Google Scholar]
- Shin J. M., Besancon M., Simon A., Sachs G. The site of action of pantoprazole in the gastric H+/K(+)-ATPase. Biochim Biophys Acta. 1993 Jun 5;1148(2):223–233. doi: 10.1016/0005-2736(93)90133-k. [DOI] [PubMed] [Google Scholar]
- Shin J. M., Kajimura M., Argüello J. M., Kaplan J. H., Sachs G. Biochemical identification of transmembrane segments of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1994 Sep 9;269(36):22533–22537. [PubMed] [Google Scholar]
- Siegmund A., Grant A., Angeletti C., Malone L., Nichols J. W., Rudolph H. K. Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. J Biol Chem. 1998 Dec 18;273(51):34399–34405. doi: 10.1074/jbc.273.51.34399. [DOI] [PubMed] [Google Scholar]
- Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
- Smolka A. J., Larsen K. A., Hammond C. E. Location of a cytoplasmic epitope for monoclonal antibody HK 12.18 on H,K-ATPase alpha subunit. Biochem Biophys Res Commun. 2000 Jul 14;273(3):942–947. doi: 10.1006/bbrc.2000.3031. [DOI] [PubMed] [Google Scholar]
- Smolka A. J., Larsen K. A., Schweinfest C. W., Hammond C. E. H,K-ATPase alpha subunit C-terminal membrane topology: epitope tags in the insect cell expression system. Biochem J. 1999 Jun 15;340(Pt 3):601–611. [PMC free article] [PubMed] [Google Scholar]
- Smolka A., Swiger K. M. Site-directed antibodies as topographical probes of the gastric H,K-ATPase alpha-subunit. Biochim Biophys Acta. 1992 Jul 8;1108(1):75–85. doi: 10.1016/0005-2736(92)90116-4. [DOI] [PubMed] [Google Scholar]
- Strehler E. E., Zacharias D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001 Jan;81(1):21–50. doi: 10.1152/physrev.2001.81.1.21. [DOI] [PubMed] [Google Scholar]
- Swarts H. G., Hermsen H. P., Koenderink J. B., Willems P. H., de Pont J. J. Conformation-dependent inhibition of gastric H+,K+-ATPase by SCH 28080 demonstrated by mutagenesis of glutamic acid 820. Mol Pharmacol. 1999 Mar;55(3):541–547. [PubMed] [Google Scholar]
- Sweadner K. J., Arystarkhova E. Constraints on models for the folding of the Na,K-ATPase. Ann N Y Acad Sci. 1992 Nov 30;671:217–227. doi: 10.1111/j.1749-6632.1992.tb43798.x. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J., Feschenko M. S. Predicted location and limited accessibility of protein kinase A phosphorylation site on Na-K-ATPase. Am J Physiol Cell Physiol. 2001 Apr;280(4):C1017–C1026. doi: 10.1152/ajpcell.2001.280.4.C1017. [DOI] [PubMed] [Google Scholar]
- Tai M. M., Im W. B., Davis J. P., Blakeman D. P., Zurcher-Neely H. A., Heinrikson R. L. Evidence for the presence of a carbohydrate moiety in fluorescein isothiocyanate labeled fragments of rat gastric (H+-K+)-ATPase. Biochemistry. 1989 Apr 18;28(8):3183–3187. doi: 10.1021/bi00434a011. [DOI] [PubMed] [Google Scholar]
- Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
- Taniguchi K., Mårdh S. Reversible changes in the fluorescence energy transfer accompanying formation of reaction intermediates in probe-labeled (Na+,K+)-ATPase. J Biol Chem. 1993 Jul 25;268(21):15588–15594. [PubMed] [Google Scholar]
- Taniguchi K., Tosa H., Suzuki K., Kamo Y. Microenvironment of two different extrinsic fluorescence probes in Na+,K+-ATPase changes out of phase during sequential appearance of reaction intermediates. J Biol Chem. 1988 Sep 15;263(26):12943–12947. [PubMed] [Google Scholar]
- Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem. 1994 Sep 16;269(37):22929–22932. [PubMed] [Google Scholar]
- Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
- Tran C. M., Farley R. A. Catalytic activity of an isolated domain of Na,K-ATPase expressed in Escherichia coli. Biophys J. 1999 Jul;77(1):258–266. doi: 10.1016/S0006-3495(99)76887-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran C. M., Huston E. E., Farley R. A. Photochemical labeling and inhibition of Na,K-ATPase by 2-Azido-ATP. Identification of an amino acid located within the ATP binding site. J Biol Chem. 1994 Mar 4;269(9):6558–6565. [PubMed] [Google Scholar]
- Van Uem T. J., Swarts H. G., De Pont J. J. Determination of the epitope for the inhibitory monoclonal antibody 5-B6 on the catalytic subunit of gastric Mg(2+)-dependent H(+)-transporting and K(+)-stimulated ATPase. Biochem J. 1991 Nov 15;280(Pt 1):243–248. doi: 10.1042/bj2800243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. G., Farley R. A. Valine 904, tyrosine 898, and cysteine 908 in Na,K-ATPase alpha subunits are important for assembly with beta subunits. J Biol Chem. 1998 Nov 6;273(45):29400–29405. doi: 10.1074/jbc.273.45.29400. [DOI] [PubMed] [Google Scholar]
- Wang X., Horisberger J. D. Mercury binding site on Na+/K(+)-ATPase: a cysteine in the first transmembrane segment. Mol Pharmacol. 1996 Sep;50(3):687–691. [PubMed] [Google Scholar]
- Yoon K. L., Guidotti G. Studies on the membrane topology of the (Na,K)-ATPase. J Biol Chem. 1994 Nov 11;269(45):28249–28258. [PubMed] [Google Scholar]
- Yudowski G. A., Efendiev R., Pedemonte C. H., Katz A. I., Berggren P. O., Bertorello A. M. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6556–6561. doi: 10.1073/pnas.100128297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Toyoshima C., Yonekura K., Green N. M., Stokes D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature. 1998 Apr 23;392(6678):835–839. doi: 10.1038/33959. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Devarajan P., Dorfman A. L., Morrow J. S. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem. 1998 Jul 24;273(30):18681–18684. doi: 10.1074/jbc.273.30.18681. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Lewis D., Strock C., Inesi G., Nakasako M., Nomura H., Toyoshima C. Detailed characterization of the cooperative mechanism of Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase. Biochemistry. 2000 Aug 1;39(30):8758–8767. doi: 10.1021/bi000185m. [DOI] [PubMed] [Google Scholar]
- Zichittella A. E., Shi H. G., Argüello J. M. Reactivity of cysteines in the transmembrane region of the Na, K-ATPase alpha subunit probed with Hg(2+). J Membr Biol. 2000 Oct 1;177(3):187–197. doi: 10.1007/s002320010002. [DOI] [PubMed] [Google Scholar]