Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):705–718. doi: 10.1042/0264-6021:3560705

Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin.

G N Marchenko 1, B I Ratnikov 1, D V Rozanov 1, A Godzik 1, E I Deryugina 1, A Y Strongin 1
PMCID: PMC1221897  PMID: 11389678

Abstract

Identification of expanding roles for matrix metalloproteinases (MMPs) in complex regulatory processes of tissue remodelling has stimulated the search for genes encoding proteinases with unique functions, regulation and expression patterns. By using a novel cloning strategy, we identified three previously unknown human MMPs, i.e. MMP-21, MMP-26 and MMP-28, in comprehensive gene libraries. The present study is focused on the gene and the protein of a novel MMP, MMP-26. Our findings show that MMP-26 is specifically expressed in cancer cells of epithelial origin, including carcinomas of lung, prostate and breast. Several unique structural and regulatory features, including an unusual 'cysteine-switch' motif, discriminate broad-spectrum MMP-26 from most other MMPs. MMP-26 efficiently cleaves fibrinogen and extracellular matrix proteins, including fibronectin, vitronectin and denatured collagen. Protein sequence, minimal modular domain structure, exon-intron mapping and computer modelling demonstrate similarity between MMP-26 and MMP-7 (matrilysin). However, substrate specificity and transcriptional regulation, as well as the functional role of MMP-26 and MMP-7 in cancer, are likely to be distinct. Despite these differences, matrilysin-2 may be a suitable trivial name for MMP-26. Our observations suggest an important specific function for MMP-26 in tumour progression and angiogenesis, and confirm and extend the recent findings of other authors [Park, Ni, Gerkema, Liu, Belozerov and Sang (2000) J. Biol. Chem. 275, 20540--20544; Uría and López-Otín (2000) Cancer Res. 60, 4745--4751; de Coignac, Elson, Delneste, Magistrelli, Jeannin, Aubry, Berthier, Schmitt, Bonnefoy and Gauchat (2000) Eur. J. Biochem. 267, 3323--3329].

Full Text

The Full Text of this article is available as a PDF (548.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S. R., Conner G. E., Nagase H., Neuhaus I., Woessner J. F., Jr Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases. J Biol Chem. 1995 Jul 7;270(27):16016–16022. doi: 10.1074/jbc.270.27.16016. [DOI] [PubMed] [Google Scholar]
  2. Apte S. S., Olsen B. R., Murphy G. The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem. 1995 Jun 16;270(24):14313–14318. doi: 10.1074/jbc.270.24.14313. [DOI] [PubMed] [Google Scholar]
  3. Becker J. W., Marcy A. I., Rokosz L. L., Axel M. G., Burbaum J. J., Fitzgerald P. M., Cameron P. M., Esser C. K., Hagmann W. K., Hermes J. D. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 1995 Oct;4(10):1966–1976. doi: 10.1002/pro.5560041002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belaaouaj A., Shipley J. M., Kobayashi D. K., Zimonjic D. B., Popescu N., Silverman G. A., Shapiro S. D. Human macrophage metalloelastase. Genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J Biol Chem. 1995 Jun 16;270(24):14568–14575. doi: 10.1074/jbc.270.24.14568. [DOI] [PubMed] [Google Scholar]
  5. Bergers G., Brekken R., McMahon G., Vu T. H., Itoh T., Tamaki K., Tanzawa K., Thorpe P., Itohara S., Werb Z. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000 Oct;2(10):737–744. doi: 10.1038/35036374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bigg H. F., Shi Y. E., Liu Y. E., Steffensen B., Overall C. M. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem. 1997 Jun 13;272(24):15496–15500. doi: 10.1074/jbc.272.24.15496. [DOI] [PubMed] [Google Scholar]
  7. Bode W. A helping hand for collagenases: the haemopexin-like domain. Structure. 1995 Jun 15;3(6):527–530. doi: 10.1016/s0969-2126(01)00185-x. [DOI] [PubMed] [Google Scholar]
  8. Browner M. F., Smith W. W., Castelhano A. L. Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry. 1995 May 23;34(20):6602–6610. doi: 10.1021/bi00020a004. [DOI] [PubMed] [Google Scholar]
  9. Deryugina E. I., Bourdon M. A., Jungwirth K., Smith J. W., Strongin A. Y. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer. 2000 Apr 1;86(1):15–23. doi: 10.1002/(sici)1097-0215(20000401)86:1<15::aid-ijc3>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  10. Fernandez-Catalan C., Bode W., Huber R., Turk D., Calvete J. J., Lichte A., Tschesche H., Maskos K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 1998 Sep 1;17(17):5238–5248. doi: 10.1093/emboj/17.17.5238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gomis-Rüth F. X., Gohlke U., Betz M., Knäuper V., Murphy G., López-Otín C., Bode W. The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J Mol Biol. 1996 Dec 6;264(3):556–566. doi: 10.1006/jmbi.1996.0661. [DOI] [PubMed] [Google Scholar]
  12. Hiraoka N., Allen E., Apel I. J., Gyetko M. R., Weiss S. J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 1998 Oct 30;95(3):365–377. doi: 10.1016/s0092-8674(00)81768-7. [DOI] [PubMed] [Google Scholar]
  13. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  14. Hotary K., Allen E., Punturieri A., Yana I., Weiss S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000 Jun 12;149(6):1309–1323. doi: 10.1083/jcb.149.6.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kazes I., Elalamy I., Sraer J. D., Hatmi M., Nguyen G. Platelet release of trimolecular complex components MT1-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood. 2000 Nov 1;96(9):3064–3069. [PubMed] [Google Scholar]
  16. Llano E., Pendás A. M., Aza-Blanc P., Kornberg T. B., López-Otín C. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem. 2000 Nov 17;275(46):35978–35985. doi: 10.1074/jbc.M006045200. [DOI] [PubMed] [Google Scholar]
  17. Llano E., Pendás A. M., Freije J. P., Nakano A., Knäuper V., Murphy G., López-Otin C. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res. 1999 Jun 1;59(11):2570–2576. [PubMed] [Google Scholar]
  18. Lohi J., Wilson C. L., Roby J. D., Parks W. C. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem. 2000 Dec 19;276(13):10134–10144. doi: 10.1074/jbc.M001599200. [DOI] [PubMed] [Google Scholar]
  19. Maidment J. M., Moore D., Murphy G. P., Murphy G., Clark I. M. Matrix metalloproteinase homologues from Arabidopsis thaliana. Expression and activity. J Biol Chem. 1999 Dec 3;274(49):34706–34710. doi: 10.1074/jbc.274.49.34706. [DOI] [PubMed] [Google Scholar]
  20. Massova I., Kotra L. P., Fridman R., Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998 Sep;12(12):1075–1095. [PubMed] [Google Scholar]
  21. Mattei M. G., Roeckel N., Olsen B. R., Apte S. S. Genes of the membrane-type matrix metalloproteinase (MT-MMP) gene family, MMP14, MMP15, and MMP16, localize to human chromosomes 14, 16, and 8, respectively. Genomics. 1997 Feb 15;40(1):168–169. doi: 10.1006/geno.1996.4559. [DOI] [PubMed] [Google Scholar]
  22. McCawley L. J., Matrisian L. M. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today. 2000 Apr;6(4):149–156. doi: 10.1016/s1357-4310(00)01686-5. [DOI] [PubMed] [Google Scholar]
  23. McQuibban G. A., Gong J. H., Tam E. M., McCulloch C. A., Clark-Lewis I., Overall C. M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000 Aug 18;289(5482):1202–1206. doi: 10.1126/science.289.5482.1202. [DOI] [PubMed] [Google Scholar]
  24. Murphy G., Gavrilovic J. Proteolysis and cell migration: creating a path? Curr Opin Cell Biol. 1999 Oct;11(5):614–621. doi: 10.1016/s0955-0674(99)00022-8. [DOI] [PubMed] [Google Scholar]
  25. Nabeshima K., Inoue T., Shimao Y., Okada Y., Itoh Y., Seiki M., Koono M. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 2000 Jul 1;60(13):3364–3369. [PubMed] [Google Scholar]
  26. Nagase H., Woessner J. F., Jr Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274(31):21491–21494. doi: 10.1074/jbc.274.31.21491. [DOI] [PubMed] [Google Scholar]
  27. Nayal M., Hitz B. C., Honig B. GRASS: a server for the graphical representation and analysis of structures. Protein Sci. 1999 Mar;8(3):676–679. doi: 10.1110/ps.8.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Park H. I., Ni J., Gerkema F. E., Liu D., Belozerov V. E., Sang Q. X. Identification and characterization of human endometase (Matrix metalloproteinase-26) from endometrial tumor. J Biol Chem. 2000 Jul 7;275(27):20540–20544. doi: 10.1074/jbc.M002349200. [DOI] [PubMed] [Google Scholar]
  29. Pei D. CA-MMP: a matrix metalloproteinase with a novel cysteine array, but without the classic cysteine switch. FEBS Lett. 1999 Aug 27;457(2):262–270. doi: 10.1016/s0014-5793(99)01046-7. [DOI] [PubMed] [Google Scholar]
  30. Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem. 1999 Mar 26;274(13):8925–8932. doi: 10.1074/jbc.274.13.8925. [DOI] [PubMed] [Google Scholar]
  31. Pei D., Kang T., Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem. 2000 Oct 27;275(43):33988–33997. doi: 10.1074/jbc.M006493200. [DOI] [PubMed] [Google Scholar]
  32. Pei D. Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999 Dec;9(4):291–303. doi: 10.1038/sj.cr.7290028. [DOI] [PubMed] [Google Scholar]
  33. Pei D., Weiss S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995 May 18;375(6528):244–247. doi: 10.1038/375244a0. [DOI] [PubMed] [Google Scholar]
  34. Pendás A. M., Knäuper V., Puente X. S., Llano E., Mattei M. G., Apte S., Murphy G., López-Otín C. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem. 1997 Feb 14;272(7):4281–4286. doi: 10.1074/jbc.272.7.4281. [DOI] [PubMed] [Google Scholar]
  35. Ratnikov B., Deryugina E., Leng J., Marchenko G., Dembrow D., Strongin A. Determination of matrix metalloproteinase activity using biotinylated gelatin. Anal Biochem. 2000 Nov 1;286(1):149–155. doi: 10.1006/abio.2000.4798. [DOI] [PubMed] [Google Scholar]
  36. Rudolph-Owen L. A., Matrisian L. M. Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J Mammary Gland Biol Neoplasia. 1998 Apr;3(2):177–189. doi: 10.1023/a:1018746923474. [DOI] [PubMed] [Google Scholar]
  37. Rychlewski L., Jaroszewski L., Li W., Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 2000 Feb;9(2):232–241. doi: 10.1110/ps.9.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  39. Seiki M. Membrane-type matrix metalloproteinases. APMIS. 1999 Jan;107(1):137–143. doi: 10.1111/j.1699-0463.1999.tb01536.x. [DOI] [PubMed] [Google Scholar]
  40. Shattuck-Brandt R. L., Lamps L. W., Heppner Goss K. J., DuBois R. N., Matrisian L. M. Differential expression of matrilysin and cyclooxygenase-2 in intestinal and colorectal neoplasms. Mol Carcinog. 1999 Mar;24(3):177–187. [PubMed] [Google Scholar]
  41. Spinale F. G., Coker M. L., Bond B. R., Zellner J. L. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res. 2000 May;46(2):225–238. doi: 10.1016/s0008-6363(99)00431-9. [DOI] [PubMed] [Google Scholar]
  42. Sternlicht M. D., Lochter A., Sympson C. J., Huey B., Rougier J. P., Gray J. W., Pinkel D., Bissell M. J., Werb Z. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999 Jul 23;98(2):137–146. doi: 10.1016/s0092-8674(00)81009-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stetler-Stevenson W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999 May;103(9):1237–1241. doi: 10.1172/JCI6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strongin A. Y., Collier I. E., Krasnov P. A., Genrich L. T., Marmer B. L., Goldberg G. I. Human 92 kDa type IV collagenase: functional analysis of fibronectin and carboxyl-end domains. Kidney Int. 1993 Jan;43(1):158–162. doi: 10.1038/ki.1993.26. [DOI] [PubMed] [Google Scholar]
  45. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
  46. Strongin A. Y., Marmer B. L., Grant G. A., Goldberg G. I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem. 1993 Jul 5;268(19):14033–14039. [PubMed] [Google Scholar]
  47. Stöcker W., Grams F., Baumann U., Reinemer P., Gomis-Rüth F. X., McKay D. B., Bode W. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 1995 May;4(5):823–840. doi: 10.1002/pro.5560040502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Velasco G., Cal S., Merlos-Suárez A., Ferrando A. A., Alvarez S., Nakano A., Arribas J., López-Otín C. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000 Feb 15;60(4):877–882. [PubMed] [Google Scholar]
  50. Velasco G., Pendás A. M., Fueyo A., Knäuper V., Murphy G., López-Otín C. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem. 1999 Feb 19;274(8):4570–4576. doi: 10.1074/jbc.274.8.4570. [DOI] [PubMed] [Google Scholar]
  51. Wasylyk B., Hahn S. L., Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. doi: 10.1007/978-3-642-78757-7_2. [DOI] [PubMed] [Google Scholar]
  52. Welch A. R., Holman C. M., Huber M., Brenner M. C., Browner M. F., Van Wart H. E. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1. Biochemistry. 1996 Aug 6;35(31):10103–10109. doi: 10.1021/bi9601969. [DOI] [PubMed] [Google Scholar]
  53. Wilson C. L., Heppner K. J., Labosky P. A., Hogan B. L., Matrisian L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1402–1407. doi: 10.1073/pnas.94.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yang M., Kurkinen M. Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts. CMMP, Xenopus XMMP, and human MMP19 have a conserved unique cysteine in the catalytic domain. J Biol Chem. 1998 Jul 10;273(28):17893–17900. doi: 10.1074/jbc.273.28.17893. [DOI] [PubMed] [Google Scholar]
  55. de Coignac A. B., Elson G., Delneste Y., Magistrelli G., Jeannin P., Aubry J. P., Berthier O., Schmitt D., Bonnefoy J. Y., Gauchat J. F. Cloning of MMP-26. A novel matrilysin-like proteinase. Eur J Biochem. 2000 Jun;267(11):3323–3329. doi: 10.1046/j.1432-1327.2000.01363.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES