Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):719–725. doi: 10.1042/0264-6021:3560719

Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta.

J W Ritchie 1, P M Taylor 1
PMCID: PMC1221898  PMID: 11389679

Abstract

The feto-placental unit relies on a maternal supply of indispensable amino acids and iodothyronines for early development and normal growth. We examined the role of the System L transporter in placental uptake of these substances, using the human placental choriocarcinoma cell line BeWo as a model experimental system. BeWo cells express both heavy (4F2hc) and light (LAT1, LAT2) chains of the System L holotransporter. Saturable transport of both L-[(3)H]tryptophan and [(125)I]tri-iodo-L-thyronine in BeWo cells includes components sensitive to inhibition by the System-L-specific substrate 2-endoamino-bicycloheptane-2-carboxylic acid; kinetic properties of these components indicate that the 4F2hc-LAT1 transporter isoform is likely to predominate for the carriage of both substances at physiologically relevant concentrations. Both 4F2hc and LAT1 proteins are also expressed in human placental membranes and LAT1 at least is localized largely to the syncytiotrophoblast layer of the term human placenta. The 4F2hc-LAT1 transporter might therefore serve a vital role in supplying the developing fetus and the placenta with both thyroid hormones and indispensable amino acids from the maternal circulation.

Full Text

The Full Text of this article is available as a PDF (247.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Kakyo M., Sakagami H., Tokui T., Nishio T., Tanemoto M., Nomura H., Hebert S. C., Matsuno S., Kondo H. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem. 1998 Aug 28;273(35):22395–22401. doi: 10.1074/jbc.273.35.22395. [DOI] [PubMed] [Google Scholar]
  2. Bell A. W., Hay W. W., Jr, Ehrhardt R. A. Placental transport of nutrients and its implications for fetal growth. J Reprod Fertil Suppl. 1999;54:401–410. [PubMed] [Google Scholar]
  3. Bilan P. J., Mitsumoto Y., Maher F., Simpson I. A., Klip A. Detection of the GLUT3 facilitative glucose transporter in rat L6 muscle cells: regulation by cellular differentiation, insulin and insulin-like growth factor-I. Biochem Biophys Res Commun. 1992 Jul 31;186(2):1129–1137. doi: 10.1016/0006-291x(92)90864-h. [DOI] [PubMed] [Google Scholar]
  4. Darras V. M., Hume R., Visser T. J. Regulation of thyroid hormone metabolism during fetal development. Mol Cell Endocrinol. 1999 May 25;151(1-2):37–47. doi: 10.1016/s0303-7207(99)00088-x. [DOI] [PubMed] [Google Scholar]
  5. Eaton B. M., Sooranna S. R. Transport of large neutral amino acids into BeWo cells. Placenta. 2000 Jul-Aug;21(5-6):558–564. doi: 10.1053/plac.2000.0507. [DOI] [PubMed] [Google Scholar]
  6. Friesema E. C., Docter R., Moerings E. P., Stieger B., Hagenbuch B., Meier P. J., Krenning E. P., Hennemann G., Visser T. J. Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999 Jan 19;254(2):497–501. doi: 10.1006/bbrc.1998.9974. [DOI] [PubMed] [Google Scholar]
  7. Ganapathy M. E., Leibach F. H., Mahesh V. B., Howard J. C., Devoe L. D., Ganapathy V. Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochem J. 1986 Aug 15;238(1):201–208. doi: 10.1042/bj2380201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kanai Y., Segawa H., Miyamoto K. i., Uchino H., Takeda E., Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998 Sep 11;273(37):23629–23632. doi: 10.1074/jbc.273.37.23629. [DOI] [PubMed] [Google Scholar]
  9. Kudo Y., Boyd C. A. Heterodimeric amino acid transporters: expression of heavy but not light chains of CD98 correlates with induction of amino acid transport systems in human placental trophoblast. J Physiol. 2000 Feb 15;523(Pt 1):13–18. doi: 10.1111/j.1469-7793.2000.t01-1-00013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kudo Y., Boyd C. A. Human placental L-tyrosine transport: a comparison of brush-border and basal membrane vesicles. J Physiol. 1990 Jul;426:381–395. doi: 10.1113/jphysiol.1990.sp018144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kudo Y., Boyd C. A. The role of L-tryptophan transport in L-tryptophan degradation by indoleamine 2,3-dioxygenase in human placental explants. J Physiol. 2001 Mar 1;531(Pt 2):417–423. doi: 10.1111/j.1469-7793.2001.0417i.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Köhrle J. Transfer und Stoffwechsel von Schilddrüsenhormonen in der Plazenta. Acta Med Austriaca. 1997;24(4):138–143. [PubMed] [Google Scholar]
  13. Moe A. J., Furesz T. C., Smith C. H. Functional characterization of L-alanine transport in a placental choriocarcinoma cell line (BeWo). Placenta. 1994 Dec;15(8):797–802. doi: 10.1016/s0143-4004(05)80182-1. [DOI] [PubMed] [Google Scholar]
  14. Moe A. J. Placental amino acid transport. Am J Physiol. 1995 Jun;268(6 Pt 1):C1321–C1331. doi: 10.1152/ajpcell.1995.268.6.C1321. [DOI] [PubMed] [Google Scholar]
  15. Munn D. H., Zhou M., Attwood J. T., Bondarev I., Conway S. J., Marshall B., Brown C., Mellor A. L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998 Aug 21;281(5380):1191–1193. doi: 10.1126/science.281.5380.1191. [DOI] [PubMed] [Google Scholar]
  16. Pineda M., Fernández E., Torrents D., Estévez R., López C., Camps M., Lloberas J., Zorzano A., Palacín M. Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem. 1999 Jul 9;274(28):19738–19744. doi: 10.1074/jbc.274.28.19738. [DOI] [PubMed] [Google Scholar]
  17. Powell K. A., Mitchell A. M., Manley S. W., Mortimer R. H., Mortimer R. H. Different transporters for tri-iodothyronine (T(3)) and thyroxine (T(4)) in the human choriocarcinoma cell line, JAR. J Endocrinol. 2000 Dec;167(3):487–492. doi: 10.1677/joe.0.1670487. [DOI] [PubMed] [Google Scholar]
  18. Prasad P. D., Leibach F. H., Mahesh V. B., Ganapathy V. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells. Endocrinology. 1994 Feb;134(2):574–581. doi: 10.1210/endo.134.2.8299556. [DOI] [PubMed] [Google Scholar]
  19. Prasad P. D., Wang H., Huang W., Kekuda R., Rajan D. P., Leibach F. H., Ganapathy V. Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function. Biochem Biophys Res Commun. 1999 Feb 16;255(2):283–288. doi: 10.1006/bbrc.1999.0206. [DOI] [PubMed] [Google Scholar]
  20. Rossier G., Meier C., Bauch C., Summa V., Sordat B., Verrey F., Kühn L. C. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999 Dec 3;274(49):34948–34954. doi: 10.1074/jbc.274.49.34948. [DOI] [PubMed] [Google Scholar]
  21. Segawa H., Fukasawa Y., Miyamoto K., Takeda E., Endou H., Kanai Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999 Jul 9;274(28):19745–19751. doi: 10.1074/jbc.274.28.19745. [DOI] [PubMed] [Google Scholar]
  22. Shah S. W., Zhao H., Low S. Y., Mcardle H. J., Hundal H. S. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo. Placenta. 1999 Nov;20(8):651–659. doi: 10.1053/plac.1999.0437. [DOI] [PubMed] [Google Scholar]
  23. Sibley C., Glazier J., D'Souza S. Placental transporter activity and expression in relation to fetal growth. Exp Physiol. 1997 Mar;82(2):389–402. doi: 10.1113/expphysiol.1997.sp004034. [DOI] [PubMed] [Google Scholar]
  24. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  25. Teixeira S., Di Grandi S., Kühn L. C. Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574–9580. [PubMed] [Google Scholar]
  26. Torrents D., Estévez R., Pineda M., Fernández E., Lloberas J., Shi Y. B., Zorzano A., Palacín M. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998 Dec 4;273(49):32437–32445. doi: 10.1074/jbc.273.49.32437. [DOI] [PubMed] [Google Scholar]
  27. Verrey F., Jack D. L., Paulsen I. T., Saier M. H., Jr, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999 Dec 1;172(3):181–192. doi: 10.1007/s002329900595. [DOI] [PubMed] [Google Scholar]
  28. Verrey F., Meier C., Rossier G., Kühn L. C. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch. 2000 Aug;440(4):503–512. doi: 10.1007/s004240000274. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES