Abstract
The factors regulating the activity of cellular phospholipase D (PLD) have been well characterized; however, the cellular distribution of specific PLD isoforms and the factors defining localization are less clear. Two specific PLD1 isoforms, PLD1a and PLD1b, are shown in the present study to be localized in endosomal compartments with early endosomal autoantigen 1, internalizing epidermal growth factor receptor (ErbB1) and lysobisphosphatidic acid. Novel C-terminal splice variants of PLD1, PLD1a2 and PLD1b2, do not exhibit this endosomal localization. Studies using catalytically inactive and C-terminal deletion mutants of the four PLD1 isoforms led to the conclusion that the C-terminus plays an important part in the catalytic activity of PLD1, but that the endosomal localization of PLD1a and PLD1b is defined by the C-terminus and not catalytic activity.
Full Text
The Full Text of this article is available as a PDF (370.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balboa M. A., Insel P. A. Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem. 1995 Dec 15;270(50):29843–29847. doi: 10.1074/jbc.270.50.29843. [DOI] [PubMed] [Google Scholar]
- Brown F. D., Thompson N., Saqib K. M., Clark J. M., Powner D., Thompson N. T., Solari R., Wakelam M. J. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol. 1998 Jul 2;8(14):835–838. doi: 10.1016/s0960-9822(98)70326-4. [DOI] [PubMed] [Google Scholar]
- Clague M. J. Molecular aspects of the endocytic pathway. Biochem J. 1998 Dec 1;336(Pt 2):271–282. doi: 10.1042/bj3360271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colley W. C., Sung T. C., Roll R., Jenco J., Hammond S. M., Altshuller Y., Bar-Sagi D., Morris A. J., Frohman M. A. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol. 1997 Mar 1;7(3):191–201. doi: 10.1016/s0960-9822(97)70090-3. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Regulation of phospholipase D. Biochim Biophys Acta. 1999 Jul 30;1439(2):121–133. doi: 10.1016/s1388-1981(99)00089-x. [DOI] [PubMed] [Google Scholar]
- Frohman M. A., Sung T. C., Morris A. J. Mammalian phospholipase D structure and regulation. Biochim Biophys Acta. 1999 Jul 30;1439(2):175–186. doi: 10.1016/s1388-1981(99)00093-1. [DOI] [PubMed] [Google Scholar]
- Gampel A., Parker P. J., Mellor H. Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr Biol. 1999 Sep 9;9(17):955–958. doi: 10.1016/s0960-9822(99)80422-9. [DOI] [PubMed] [Google Scholar]
- Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
- Hammond S. M., Altshuller Y. M., Sung T. C., Rudge S. A., Rose K., Engebrecht J., Morris A. J., Frohman M. A. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995 Dec 15;270(50):29640–29643. doi: 10.1074/jbc.270.50.29640. [DOI] [PubMed] [Google Scholar]
- Hammond S. M., Jenco J. M., Nakashima S., Cadwallader K., Gu Q., Cook S., Nozawa Y., Prestwich G. D., Frohman M. A., Morris A. J. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem. 1997 Feb 7;272(6):3860–3868. doi: 10.1074/jbc.272.6.3860. [DOI] [PubMed] [Google Scholar]
- Hodgkin M. N., Masson M. R., Powner D., Saqib K. M., Ponting C. P., Wakelam M. J. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. Curr Biol. 2000 Jan 13;10(1):43–46. doi: 10.1016/s0960-9822(99)00264-x. [DOI] [PubMed] [Google Scholar]
- Houle M. G., Bourgoin S. Regulation of phospholipase D by phosphorylation-dependent mechanisms. Biochim Biophys Acta. 1999 Jul 30;1439(2):135–149. doi: 10.1016/s1388-1981(99)00090-6. [DOI] [PubMed] [Google Scholar]
- Hughes W. E., Woscholski R., Cooke F. T., Patrick R. S., Dove S. K., McDonald N. Q., Parker P. J. SAC1 encodes a regulated lipid phosphoinositide phosphatase, defects in which can be suppressed by the homologous Inp52p and Inp53p phosphatases. J Biol Chem. 2000 Jan 14;275(2):801–808. doi: 10.1074/jbc.275.2.801. [DOI] [PubMed] [Google Scholar]
- Karlsson K., Carlsson S. R. Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/gamma-adaptin vesicles at the trans-Golgi network. J Biol Chem. 1998 Jul 24;273(30):18966–18973. doi: 10.1074/jbc.273.30.18966. [DOI] [PubMed] [Google Scholar]
- Kiley S. C., Parker P. J. Differential localization of protein kinase C isozymes in U937 cells: evidence for distinct isozyme functions during monocyte differentiation. J Cell Sci. 1995 Mar;108(Pt 3):1003–1016. doi: 10.1242/jcs.108.3.1003. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Stang E., Fang K. S., de Moerloose P., Parton R. G., Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature. 1998 Mar 12;392(6672):193–197. doi: 10.1038/32440. [DOI] [PubMed] [Google Scholar]
- Kodaki T., Yamashita S. Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J Biol Chem. 1997 Apr 25;272(17):11408–11413. doi: 10.1074/jbc.272.17.11408. [DOI] [PubMed] [Google Scholar]
- Ktistakis N. T., Brown H. A., Sternweis P. C., Roth M. G. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4952–4956. doi: 10.1073/pnas.92.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ktistakis N. T., Manifava M., Sugars J., Bi K., Roth M. G. Cellular expression and function of phospholipase D1. Biochem Soc Trans. 1999 Aug;27(4):634–637. doi: 10.1042/bst0270634. [DOI] [PubMed] [Google Scholar]
- Liscovitch M., Czarny M., Fiucci G., Lavie Y., Tang X. Localization and possible functions of phospholipase D isozymes. Biochim Biophys Acta. 1999 Jul 30;1439(2):245–263. doi: 10.1016/s1388-1981(99)00098-0. [DOI] [PubMed] [Google Scholar]
- Liscovitch M., Czarny M., Fiucci G., Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J. 2000 Feb 1;345(Pt 3):401–415. [PMC free article] [PubMed] [Google Scholar]
- Liu M. Y., Gutowski S., Sternweis P. C. The C terminus of mammalian phospholipase D is required for catalytic activity. J Biol Chem. 2000 Nov 16;276(8):5556–5562. doi: 10.1074/jbc.M006404200. [DOI] [PubMed] [Google Scholar]
- Manifava M., Sugars J., Ktistakis N. T. Modification of catalytically active phospholipase D1 with fatty acid in vivo. J Biol Chem. 1999 Jan 8;274(2):1072–1077. doi: 10.1074/jbc.274.2.1072. [DOI] [PubMed] [Google Scholar]
- Marais R. M., Parker P. J. Purification and characterisation of bovine brain protein kinase C isotypes alpha, beta and gamma. Eur J Biochem. 1989 Jun 1;182(1):129–137. doi: 10.1111/j.1432-1033.1989.tb14809.x. [DOI] [PubMed] [Google Scholar]
- Massenburg D., Han J. S., Liyanage M., Patton W. A., Rhee S. G., Moss J., Vaughan M. Activation of rat brain phospholipase D by ADP-ribosylation factors 1,5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11718–11722. doi: 10.1073/pnas.91.24.11718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan C. P., Sengelov H., Whatmore J., Borregaard N., Cockcroft S. ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils. Biochem J. 1997 Aug 1;325(Pt 3):581–585. doi: 10.1042/bj3250581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura N., Rabouille C., Watson R., Nilsson T., Hui N., Slusarewicz P., Kreis T. E., Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995 Dec;131(6 Pt 2):1715–1726. doi: 10.1083/jcb.131.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh D. B., Katso R. M., Leslie N. R., Downes C. P., Procyk K. J., Waterfield M. D., Parker P. J. Beta1-integrin and PTEN control the phosphorylation of protein kinase C. Biochem J. 2000 Dec 1;352(Pt 2):425–433. [PMC free article] [PubMed] [Google Scholar]
- Park S. K., Provost J. J., Bae C. D., Ho W. T., Exton J. H. Cloning and characterization of phospholipase D from rat brain. J Biol Chem. 1997 Nov 14;272(46):29263–29271. doi: 10.1074/jbc.272.46.29263. [DOI] [PubMed] [Google Scholar]
- Parton R. G. Caveolae and caveolins. Curr Opin Cell Biol. 1996 Aug;8(4):542–548. doi: 10.1016/s0955-0674(96)80033-0. [DOI] [PubMed] [Google Scholar]
- Schmid S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem. 1997;66:511–548. doi: 10.1146/annurev.biochem.66.1.511. [DOI] [PubMed] [Google Scholar]
- Sciorra V. A., Rudge S. A., Prestwich G. D., Frohman M. A., Engebrecht J., Morris A. J. Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J. 1999 Nov 1;18(21):5911–5921. doi: 10.1093/emboj/18.21.5911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqi A. R., Smith J. L., Ross A. H., Qiu R. G., Symons M., Exton J. H. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem. 1995 Apr 14;270(15):8466–8473. doi: 10.1074/jbc.270.15.8466. [DOI] [PubMed] [Google Scholar]
- Simonsen A., Lippé R., Christoforidis S., Gaullier J. M., Brech A., Callaghan J., Toh B. H., Murphy C., Zerial M., Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature. 1998 Jul 30;394(6692):494–498. doi: 10.1038/28879. [DOI] [PubMed] [Google Scholar]
- Sorkin A., Waters C. M. Endocytosis of growth factor receptors. Bioessays. 1993 Jun;15(6):375–382. doi: 10.1002/bies.950150603. [DOI] [PubMed] [Google Scholar]
- Sugars J. M., Cellek S., Manifava M., Coadwell J., Ktistakis N. T. Fatty acylation of phospholipase D1 on cysteine residues 240 and 241 determines localization on intracellular membranes. J Biol Chem. 1999 Oct 15;274(42):30023–30027. doi: 10.1074/jbc.274.42.30023. [DOI] [PubMed] [Google Scholar]
- Sung T. C., Roper R. L., Zhang Y., Rudge S. A., Temel R., Hammond S. M., Morris A. J., Moss B., Engebrecht J., Frohman M. A. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997 Aug 1;16(15):4519–4530. doi: 10.1093/emboj/16.15.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung T. C., Zhang Y., Morris A. J., Frohman M. A. Structural analysis of human phospholipase D1. J Biol Chem. 1999 Feb 5;274(6):3659–3666. doi: 10.1074/jbc.274.6.3659. [DOI] [PubMed] [Google Scholar]
- Toda K., Nogami M., Murakami K., Kanaho Y., Nakayama K. Colocalization of phospholipase D1 and GTP-binding-defective mutant of ADP-ribosylation factor 6 to endosomes and lysosomes. FEBS Lett. 1999 Jan 15;442(2-3):221–225. doi: 10.1016/s0014-5793(98)01646-9. [DOI] [PubMed] [Google Scholar]
- Vinggaard A. M., Provost J. J., Exton J. H., Hansen H. S. Arf and RhoA regulate both the cytosolic and the membrane-bound phospholipase D from human placenta. Cell Signal. 1997 Feb;9(2):189–196. doi: 10.1016/s0898-6568(96)00140-4. [DOI] [PubMed] [Google Scholar]
- Wang P., Anthes J. C., Siegel M. I., Egan R. W., Billah M. M. Existence of cytosolic phospholipase D. Identification and comparison with membrane-bound enzyme. J Biol Chem. 1991 Aug 15;266(23):14877–14880. [PubMed] [Google Scholar]
- Waters M. G., Clary D. O., Rothman J. E. A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol. 1992 Sep;118(5):1015–1026. doi: 10.1083/jcb.118.5.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whatmore J., Morgan C. P., Cunningham E., Collison K. S., Willison K. R., Cockcroft S. ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cells. Biochem J. 1996 Dec 15;320(Pt 3):785–794. doi: 10.1042/bj3200785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie Z., Ho W. T., Exton J. H. Association of N- and C-terminal domains of phospholipase D is required for catalytic activity. J Biol Chem. 1998 Dec 25;273(52):34679–34682. doi: 10.1074/jbc.273.52.34679. [DOI] [PubMed] [Google Scholar]
- Xie Z., Ho W. T., Exton J. H. Association of the N- and C-terminal domains of phospholipase D. Contribution of the conserved HKD motifs to the interaction and the requirement of the association for Ser/Thr phosphorylation of the enzyme. J Biol Chem. 2000 Aug 11;275(32):24962–24969. doi: 10.1074/jbc.M909745199. [DOI] [PubMed] [Google Scholar]
- Xie Z., Ho W. T., Exton J. H. Conserved amino acids at the C-terminus of rat phospholipase D1 are essential for enzymatic activity. Eur J Biochem. 2000 Dec;267(24):7138–7146. doi: 10.1046/j.1432-1327.2000.01816.x. [DOI] [PubMed] [Google Scholar]
- van Blitterswijk W. J., Hilkmann H. Rapid attenuation of receptor-induced diacylglycerol and phosphatidic acid by phospholipase D-mediated transphosphatidylation: formation of bisphosphatidic acid. EMBO J. 1993 Jul;12(7):2655–2662. doi: 10.1002/j.1460-2075.1993.tb05926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]