Abstract
We have previously reported that substrates of monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) exert short-term insulin-like effects in rat adipocytes, such as stimulation of glucose transport. In the present work, we studied whether these substrates could also mimic long-term actions of insulin. Adipose differentiation of 3T3 F442A cells, which is highly insulin-dependent, served as a model to test the effects of sustained administration of amine oxidase substrates. Daily treatment of confluent cells with 0.75 mM tyramine (a substrate of MAO and SSAO) or benzylamine (a substrate of SSAO) over 1 week caused the acquisition of typical adipocyte morphology. The stimulation of protein synthesis and triacylglycerol accumulation caused by tyramine or benzylamine reached one half of that promoted by insulin. This effect was insensitive to pargyline (an MAO inhibitor), but was inhibited by semicarbazide (an SSAO inhibitor) and by N-acetylcysteine (an antioxidant agent), suggesting the involvement of the H(2)O(2) generated during SSAO-dependent amine oxidation. Chronic administration of amine oxidase substrates also induced the emergence of adipose conversion markers, such as aP2, glycerol-3-phosphate dehydrogenase, the glucose transporter GLUT4, and SSAO itself. Moreover, cells treated with amines acquired the same insulin sensitivity regarding glucose transport as adipocytes classically differentiated with insulin. In all, most of the adipogenic effects of amines were additive to insulin. Our data reveal that amine oxidase substrates partially mimic the adipogenic effect of insulin in cultured preadipocytes. Furthermore, they suggest that SSAO not only represents a novel late marker of adipogenesis, but could also be directly involved in the triggering of terminal adipocyte differentiation.
Full Text
The Full Text of this article is available as a PDF (315.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amri E. Z., Bertrand B., Ailhaud G., Grimaldi P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res. 1991 Sep;32(9):1449–1456. [PubMed] [Google Scholar]
- Barrand M. A., Callingham B. A. Monoamine oxidase activities in brown adipose tissue of the rat: some properties and subcellular distribution. Biochem Pharmacol. 1982 Jun 15;31(12):2177–2184. doi: 10.1016/0006-2952(82)90511-1. [DOI] [PubMed] [Google Scholar]
- Callingham B. A., Crosbie A. E., Rous B. A. Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. Prog Brain Res. 1995;106:305–321. doi: 10.1016/s0079-6123(08)61227-3. [DOI] [PubMed] [Google Scholar]
- Callingham B. A., Holt A., Elliott J. Properties and functions of the semicarbazide-sensitive amine oxidases. Biochem Soc Trans. 1991 Feb;19(1):228–233. doi: 10.1042/bst0190228. [DOI] [PubMed] [Google Scholar]
- Castelló A., Rodríguez-Manzaneque J. C., Camps M., Pérez-Castillo A., Testar X., Palacín M., Santos A., Zorzano A. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem. 1994 Feb 25;269(8):5905–5912. [PubMed] [Google Scholar]
- Enrique-Tarancón G., Castan I., Morin N., Marti L., Abella A., Camps M., Casamitjana R., Palacín M., Testar X., Degerman E. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J. 2000 Aug 15;350(Pt 1):171–180. [PMC free article] [PubMed] [Google Scholar]
- Enrique-Tarancón G., Marti L., Morin N., Lizcano J. M., Unzeta M., Sevilla L., Camps M., Palacín M., Testar X., Carpéné C. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem. 1998 Apr 3;273(14):8025–8032. doi: 10.1074/jbc.273.14.8025. [DOI] [PubMed] [Google Scholar]
- Faruqi R. M., Poptic E. J., Faruqi T. R., De La Motte C., DiCorleto P. E. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression. Am J Physiol. 1997 Aug;273(2 Pt 2):H817–H826. doi: 10.1152/ajpheart.1997.273.2.H817. [DOI] [PubMed] [Google Scholar]
- Fischer Y., Thomas J., Kamp J., Jüngling E., Rose H., Carpéné, Kammermeier H. 5-hydroxytryptamine stimulates glucose transport in cardiomyocytes via a monoamine oxidase-dependent reaction. Biochem J. 1995 Oct 15;311(Pt 2):575–583. doi: 10.1042/bj3110575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia de Herreros A., Birnbaum M. J. The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene. J Biol Chem. 1989 Nov 25;264(33):19994–19999. [PubMed] [Google Scholar]
- Heffetz D., Bushkin I., Dror R., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem. 1990 Feb 15;265(5):2896–2902. [PubMed] [Google Scholar]
- Krieger-Brauer H. I., Kather H. Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J. 1995 Apr 15;307(Pt 2):549–556. doi: 10.1042/bj3070549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lizcano J. M., Tipton K. F., Unzeta M. Purification and characterization of membrane-bound semicarbazide-sensitive amine oxidase (SSAO) from bovine lung. Biochem J. 1998 Apr 1;331(Pt 1):69–78. doi: 10.1042/bj3310069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyles G. A. Substrate-specificity of mammalian tissue-bound semicarbazide-sensitive amine oxidase. Prog Brain Res. 1995;106:293–303. doi: 10.1016/s0079-6123(08)61226-1. [DOI] [PubMed] [Google Scholar]
- MacDougald O. A., Lane M. D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995;64:345–373. doi: 10.1146/annurev.bi.64.070195.002021. [DOI] [PubMed] [Google Scholar]
- Mantle T. J., Tipton K. F. Monoamine oxidase A and B: a useful concept? Biochem Pharmacol. 1978 Jan 1;27(1):97–101. doi: 10.1016/0006-2952(78)90262-9. [DOI] [PubMed] [Google Scholar]
- Marti L., Morin N., Enrique-Tarancon G., Prevot D., Lafontan M., Testar X., Zorzano A., Carpéné C. Tyramine and vanadate synergistically stimulate glucose transport in rat adipocytes by amine oxidase-dependent generation of hydrogen peroxide. J Pharmacol Exp Ther. 1998 Apr;285(1):342–349. [PubMed] [Google Scholar]
- Moldes M., Fève B., Pairault J. Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage. differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase. J Biol Chem. 1999 Apr 2;274(14):9515–9523. doi: 10.1074/jbc.274.14.9515. [DOI] [PubMed] [Google Scholar]
- Morris N. J., Ducret A., Aebersold R., Ross S. A., Keller S. R., Lienhard G. E. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem. 1997 Apr 4;272(14):9388–9392. doi: 10.1074/jbc.272.14.9388. [DOI] [PubMed] [Google Scholar]
- Pairault J., Green H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5138–5142. doi: 10.1073/pnas.76.10.5138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pizzinat N., Marti L., Remaury A., Leger F., Langin D., Lafontan M., Carpéné C., Parini A. High expression of monoamine oxidases in human white adipose tissue: evidence for their involvement in noradrenaline clearance. Biochem Pharmacol. 1999 Dec 1;58(11):1735–1742. doi: 10.1016/s0006-2952(99)00270-1. [DOI] [PubMed] [Google Scholar]
- Raimondi L., Pirisino R., Banchelli G., Ignesti G., Conforti L., Buffoni F. Cultured preadipocytes produce a semicarbazide-sensitive amine oxidase (SSAO) activity. J Neural Transm Suppl. 1990;32:331–336. doi: 10.1007/978-3-7091-9113-2_44. [DOI] [PubMed] [Google Scholar]
- Raimondi L., Pirisino R., Ignesti G., Capecchi S., Banchelli G., Buffoni F. Semicarbazide-sensitive amine oxidase activity (SSAO) of rat epididymal white adipose tissue. Biochem Pharmacol. 1991 Feb 1;41(3):467–470. doi: 10.1016/0006-2952(91)90549-k. [DOI] [PubMed] [Google Scholar]
- Rudich A., Kozlovsky N., Potashnik R., Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol. 1997 May;272(5 Pt 1):E935–E940. doi: 10.1152/ajpendo.1997.272.5.E935. [DOI] [PubMed] [Google Scholar]
- Salminen T. A., Smith D. J., Jalkanen S., Johnson M. S. Structural model of the catalytic domain of an enzyme with cell adhesion activity: human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. Protein Eng. 1998 Dec;11(12):1195–1204. doi: 10.1093/protein/11.12.1195. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Frank M., Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem. 1983 Aug 25;258(16):10083–10089. [PubMed] [Google Scholar]
- Taylor W. M., Halperin M. L. Stimulation of glucose transport in rat adipocytes by insulin, adenosine, nicotinic acid and hydrogen peroxide. Role of adenosine 3':5'-cyclic monophosphate. Biochem J. 1979 Feb 15;178(2):381–389. doi: 10.1042/bj1780381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipton K. F. Monoamine oxidase inhibition. Biochem Soc Trans. 1994 Aug;22(3):764–768. doi: 10.1042/bst0220764. [DOI] [PubMed] [Google Scholar]
- Tong J. H., D'Iorio A., Kandaswami C. On the characteristics of mitochondrial monoamine oxidase in pancreas and adipose tissues from genetically obese mice. Can J Biochem. 1979 Mar;57(3):197–200. doi: 10.1139/o79-024. [DOI] [PubMed] [Google Scholar]
- Wise L. S., Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem. 1979 Jan 25;254(2):273–275. [PubMed] [Google Scholar]
- Wu Z., Xie Y., Morrison R. F., Bucher N. L., Farmer S. R. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest. 1998 Jan 1;101(1):22–32. doi: 10.1172/JCI1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B., Berger J., Zhou G., Elbrecht A., Biswas S., White-Carrington S., Szalkowski D., Moller D. E. Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 1996 Dec 13;271(50):31771–31774. doi: 10.1074/jbc.271.50.31771. [DOI] [PubMed] [Google Scholar]
- Zhang X., McIntire W. S. Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. Gene. 1996 Nov 14;179(2):279–286. doi: 10.1016/s0378-1119(96)00387-3. [DOI] [PubMed] [Google Scholar]