Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):779–789. doi: 10.1042/0264-6021:3560779

A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast.

J A Stuart 1, J A Harper 1, K M Brindle 1, M B Jekabsons 1, M D Brand 1
PMCID: PMC1221904  PMID: 11389685

Abstract

Uncoupling protein 1 (UCP1) from mouse was expressed in yeast and the specific (GDP-inhibitable) and artifactual (GDP-insensitive) effects on mitochondrial uncoupling were assessed. UCP1 provides a GDP-inhibitable model system to help interpret the uncoupling effects of high expression in yeast of other members of the mitochondrial carrier protein family, such as the UCP1 homologues UCP2 and UCP3. Yeast expressing UCP1 at modest levels (approx. 1 microg/mg of mitochondrial protein) showed no growth defect, normal rates of chemically uncoupled respiration and an increased non-phosphorylating proton conductance that was completely GDP-sensitive. The catalytic-centre activity of UCP1 in these yeast mitochondria was similar to that in mammalian brown-adipose-tissue mitochondria. However, yeast expressing UCP1 at higher levels (approx. 11 microg/mg of mitochondrial protein) showed a growth defect. Their mitochondria had depressed chemically uncoupled respiration rates and an increased proton conductance that was partly GDP-insensitive. Thus, although UCP1 shows native behaviour at modest levels of expression in yeast, higher levels (or rates) of expression can lead to an uncoupling that is not a physiological property of the native protein and is therefore artifactual. This observation might be important in the interpretation of results from experiments in which the functions of UCP1 homologues are verified by their ability to uncouple yeast mitochondria.

Full Text

The Full Text of this article is available as a PDF (205.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arechaga I., Raimbault S., Prieto S., Levi-Meyrueis C., Zaragoza P., Miroux B., Ricquier D., Bouillaud F., Rial E. Cysteine residues are not essential for uncoupling protein function. Biochem J. 1993 Dec 15;296(Pt 3):693–700. doi: 10.1042/bj2960693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bathgate B., Freebairn E. M., Greenland A. J., Reid G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol Microbiol. 1992 Feb;6(3):363–370. doi: 10.1111/j.1365-2958.1992.tb01479.x. [DOI] [PubMed] [Google Scholar]
  3. Boss O., Samec S., Paoloni-Giacobino A., Rossier C., Dulloo A., Seydoux J., Muzzin P., Giacobino J. P. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997 May 12;408(1):39–42. doi: 10.1016/s0014-5793(97)00384-0. [DOI] [PubMed] [Google Scholar]
  4. Bouillaud F., Arechaga I., Petit P. X., Raimbault S., Levi-Meyrueis C., Casteilla L., Laurent M., Rial E., Ricquier D. A sequence related to a DNA recognition element is essential for the inhibition by nucleotides of proton transport through the mitochondrial uncoupling protein. EMBO J. 1994 Apr 15;13(8):1990–1997. doi: 10.1002/j.1460-2075.1994.tb06468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand M. D., Brindle K. M., Buckingham J. A., Harper J. A., Rolfe D. F., Stuart J. A. The significance and mechanism of mitochondrial proton conductance. Int J Obes Relat Metab Disord. 1999 Jun;23 (Suppl 6):S4–11. doi: 10.1038/sj.ijo.0800936. [DOI] [PubMed] [Google Scholar]
  6. Cadenas S., Buckingham J. A., Samec S., Seydoux J., Din N., Dulloo A. G., Brand M. D. UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett. 1999 Dec 3;462(3):257–260. doi: 10.1016/s0014-5793(99)01540-9. [DOI] [PubMed] [Google Scholar]
  7. Cannon B., Lindberg O. Mitochondria from brown adipose tissue: isolation and properties. Methods Enzymol. 1979;55:65–78. doi: 10.1016/0076-6879(79)55010-1. [DOI] [PubMed] [Google Scholar]
  8. Clapham J. C., Arch J. R., Chapman H., Haynes A., Lister C., Moore G. B., Piercy V., Carter S. A., Lehner I., Smith S. A. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000 Jul 27;406(6794):415–418. doi: 10.1038/35019082. [DOI] [PubMed] [Google Scholar]
  9. Damsky C. H. Environmentally induced changes in mitochondria and endoplasmic reticulum of Saccharomyces carlsbergensis yeast. J Cell Biol. 1976 Oct;71(1):123–135. doi: 10.1083/jcb.71.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Echtay K. S., Bienengraeber M., Klingenberg M. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization Of E190 largely abolishes pH control of nucleotide binding. Biochemistry. 1997 Jul 8;36(27):8253–8260. doi: 10.1021/bi970513r. [DOI] [PubMed] [Google Scholar]
  11. Echtay K. S., Bienengraeber M., Winkler E., Klingenberg M. In the uncoupling protein (UCP-1) His-214 is involved in the regulation of purine nucleoside triphosphate but not diphosphate binding. J Biol Chem. 1998 Sep 18;273(38):24368–24374. doi: 10.1074/jbc.273.38.24368. [DOI] [PubMed] [Google Scholar]
  12. Echtay K. S., Liu Q., Caskey T., Winkler E., Frischmuth K., Bienengräber M., Klingenberg M. Regulation of UCP3 by nucleotides is different from regulation of UCP1. FEBS Lett. 1999 Apr 30;450(1-2):8–12. doi: 10.1016/s0014-5793(99)00460-3. [DOI] [PubMed] [Google Scholar]
  13. Echtay K. S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000 Nov 30;408(6812):609–613. doi: 10.1038/35046114. [DOI] [PubMed] [Google Scholar]
  14. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  15. Garlid K. D., Jabůrek M., Jezek P. The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett. 1998 Oct 30;438(1-2):10–14. doi: 10.1016/s0014-5793(98)01246-0. [DOI] [PubMed] [Google Scholar]
  16. Gimeno R. E., Dembski M., Weng X., Deng N., Shyjan A. W., Gimeno C. J., Iris F., Ellis S. J., Woolf E. A., Tartaglia L. A. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 1997 May;46(5):900–906. doi: 10.2337/diab.46.5.900. [DOI] [PubMed] [Google Scholar]
  17. Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
  18. Goubern M., Chapey M. F., Portet R. Time-course variations of effective proton conductance and GDP binding in brown adipose tissue mitochondria of rats during prolonged cold exposure. Comp Biochem Physiol B. 1991;100(4):727–732. doi: 10.1016/0305-0491(91)90281-h. [DOI] [PubMed] [Google Scholar]
  19. Goubern M., Chapey M. F., Senault C., Laury M. C., Yazbeck J., Miroux B., Ricquier D., Portet R. Effect of sympathetic de-activation on thermogenic function and membrane lipid composition in mitochondria of brown adipose tissue. Biochim Biophys Acta. 1992 Jun 11;1107(1):159–164. doi: 10.1016/0005-2736(92)90342-j. [DOI] [PubMed] [Google Scholar]
  20. Goubern M., Yazbeck J., Chapey M. F., Diolez P., Moreau F. Variations in energization parameters and proton conductance induced by cold adaptation and essential fatty acid deficiency in mitochondria of brown adipose tissue in the rat. Biochim Biophys Acta. 1990 Feb 2;1015(2):334–340. doi: 10.1016/0005-2728(90)90038-6. [DOI] [PubMed] [Google Scholar]
  21. Guérin B., Labbe P., Somlo M. Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol. 1979;55:149–159. doi: 10.1016/0076-6879(79)55021-6. [DOI] [PubMed] [Google Scholar]
  22. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hinz W., Faller B., Grüninger S., Gazzotti P., Chiesi M. Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells. FEBS Lett. 1999 Apr 1;448(1):57–61. doi: 10.1016/s0014-5793(99)00331-2. [DOI] [PubMed] [Google Scholar]
  24. Hinz W., Grüninger S., De Pover A., Chiesi M. Properties of the human long and short isoforms of the uncoupling protein-3 expressed in yeast cells. FEBS Lett. 1999 Dec 3;462(3):411–415. doi: 10.1016/s0014-5793(99)01568-9. [DOI] [PubMed] [Google Scholar]
  25. Jabůrek M., Varecha M., Gimeno R. E., Dembski M., Jezek P., Zhang M., Burn P., Tartaglia L. A., Garlid K. D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem. 1999 Sep 10;274(37):26003–26007. doi: 10.1074/jbc.274.37.26003. [DOI] [PubMed] [Google Scholar]
  26. Jekabsons M. B., Gregoire F. M., Schonfeld-Warden N. A., Warden C. H., Horwitz B. A. T(3) stimulates resting metabolism and UCP-2 and UCP-3 mRNA but not nonphosphorylating mitochondrial respiration in mice. Am J Physiol. 1999 Aug;277(2 Pt 1):E380–E389. doi: 10.1152/ajpendo.1999.277.2.E380. [DOI] [PubMed] [Google Scholar]
  27. Klingenberg M., Winkler E. The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J. 1985 Dec 1;4(12):3087–3092. doi: 10.1002/j.1460-2075.1985.tb04049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laloi M., Klein M., Riesmeier J. W., Müller-Röber B., Fleury C., Bouillaud F., Ricquier D. A plant cold-induced uncoupling protein. Nature. 1997 Sep 11;389(6647):135–136. doi: 10.1038/38156. [DOI] [PubMed] [Google Scholar]
  31. Lanni A., Beneduce L., Lombardi A., Moreno M., Boss O., Muzzin P., Giacobino J. P., Goglia F. Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Lett. 1999 Feb 12;444(2-3):250–254. doi: 10.1016/s0014-5793(99)00061-7. [DOI] [PubMed] [Google Scholar]
  32. Lindgren G., Barnard T. Changes in interscapular brown adipose tissue of rat during perinatal and early postnatal development and after cold acclimation. IV. Morphometric investigation of mitochondrial membrane alterations. Exp Cell Res. 1972 Jan;70(1):81–90. doi: 10.1016/0014-4827(72)90184-x. [DOI] [PubMed] [Google Scholar]
  33. Mao W., Yu X. X., Zhong A., Li W., Brush J., Sherwood S. W., Adams S. H., Pan G. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 1999 Jan 29;443(3):326–330. doi: 10.1016/s0014-5793(98)01713-x. [DOI] [PubMed] [Google Scholar]
  34. Matthias A., Jacobsson A., Cannon B., Nedergaard J. The bioenergetics of brown fat mitochondria from UCP1-ablated mice. Ucp1 is not involved in fatty acid-induced de-energization ("uncoupling"). J Biol Chem. 1999 Oct 1;274(40):28150–28160. doi: 10.1074/jbc.274.40.28150. [DOI] [PubMed] [Google Scholar]
  35. Murdza-Inglis D. L., Patel H. V., Freeman K. B., Jezek P., Orosz D. E., Garlid K. D. Functional reconstitution of rat uncoupling protein following its high level expression in yeast. J Biol Chem. 1991 Jun 25;266(18):11871–11875. [PubMed] [Google Scholar]
  36. Nicholls D. G., Bernson V. S. Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur J Biochem. 1977 May 16;75(2):601–612. doi: 10.1111/j.1432-1033.1977.tb11560.x. [DOI] [PubMed] [Google Scholar]
  37. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. Purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide binding site. Eur J Biochem. 1976 Feb 16;62(2):223–228. doi: 10.1111/j.1432-1033.1976.tb10151.x. [DOI] [PubMed] [Google Scholar]
  38. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane. Eur J Biochem. 1974 Dec 2;49(3):573–583. doi: 10.1111/j.1432-1033.1974.tb03861.x. [DOI] [PubMed] [Google Scholar]
  39. Nicholls D. G. The bioenergetics of brown adipose tissue mitochondria. FEBS Lett. 1976 Jan 15;61(2):103–110. doi: 10.1016/0014-5793(76)81014-9. [DOI] [PubMed] [Google Scholar]
  40. Nicholls D. G. The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient. Eur J Biochem. 1977 Jul 15;77(2):349–356. doi: 10.1111/j.1432-1033.1977.tb11674.x. [DOI] [PubMed] [Google Scholar]
  41. Porter R. K., Hulbert A. J., Brand M. D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol. 1996 Dec;271(6 Pt 2):R1550–R1560. doi: 10.1152/ajpregu.1996.271.6.R1550. [DOI] [PubMed] [Google Scholar]
  42. Rial E., González-Barroso M., Fleury C., Iturrizaga S., Sanchis D., Jiménez-Jiménez J., Ricquier D., Goubern M., Bouillaud F. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 1999 Nov 1;18(21):5827–5833. doi: 10.1093/emboj/18.21.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rial E., Poustie A., Nicholls D. G. Brown-adipose-tissue mitochondria: the regulation of the 32000-Mr uncoupling protein by fatty acids and purine nucleotides. Eur J Biochem. 1983 Dec 1;137(1-2):197–203. doi: 10.1111/j.1432-1033.1983.tb07815.x. [DOI] [PubMed] [Google Scholar]
  44. Samec S., Seydoux J., Dulloo A. G. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 1998 Jun;12(9):715–724. doi: 10.1096/fasebj.12.9.715. [DOI] [PubMed] [Google Scholar]
  45. Sanchis D., Fleury C., Chomiki N., Goubern M., Huang Q., Neverova M., Grégoire F., Easlick J., Raimbault S., Lévi-Meyrueis C. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem. 1998 Dec 18;273(51):34611–34615. doi: 10.1074/jbc.273.51.34611. [DOI] [PubMed] [Google Scholar]
  46. Stuart J. A., Brindle K. M., Harper J. A., Brand M. D. Mitochondrial proton leak and the uncoupling proteins. J Bioenerg Biomembr. 1999 Oct;31(5):517–525. doi: 10.1023/a:1005456725549. [DOI] [PubMed] [Google Scholar]
  47. Stuart J. A., Cadenas S., Jekabsons M. B., Roussel D., Brand M. D. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta. 2001 Mar 1;1504(1):144–158. doi: 10.1016/s0005-2728(00)00243-7. [DOI] [PubMed] [Google Scholar]
  48. Trayhurn P., Milner R. E. A commentary on the interpretation of in vitro biochemical measures of brown adipose tissue thermogenesis. Can J Physiol Pharmacol. 1989 Aug;67(8):811–819. doi: 10.1139/y89-128. [DOI] [PubMed] [Google Scholar]
  49. Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
  50. Way M., Pope B., Gooch J., Hawkins M., Weeds A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 1990 Dec;9(12):4103–4109. doi: 10.1002/j.1460-2075.1990.tb07632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Winkler E., Klingenberg M. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport. Eur J Biochem. 1992 Jul 1;207(1):135–145. doi: 10.1111/j.1432-1033.1992.tb17030.x. [DOI] [PubMed] [Google Scholar]
  52. Yu X. X., Barger J. L., Boyer B. B., Brand M. D., Pan G., Adams S. H. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. Am J Physiol Endocrinol Metab. 2000 Aug;279(2):E433–E446. doi: 10.1152/ajpendo.2000.279.2.E433. [DOI] [PubMed] [Google Scholar]
  53. Zhang C. Y., Hagen T., Mootha V. K., Slieker L. J., Lowell B. B. Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system. FEBS Lett. 1999 Apr 23;449(2-3):129–134. doi: 10.1016/s0014-5793(99)00441-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES