Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):883–889. doi: 10.1042/0264-6021:3560883

Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro.

L Gambling 1, R Danzeisen 1, S Gair 1, R G Lea 1, Z Charania 1, N Solanky 1, K D Joory 1, S K Srai 1, H J McArdle 1
PMCID: PMC1221917  PMID: 11389698

Abstract

Maternal iron deficiency during pregnancy induces anaemia in the developing fetus; however, the severity tends to be less than in the mother. The mechanism underlying this resistance has not been determined. We have measured placental expression of proteins involved in iron transfer in pregnant rats given diets with decreasing levels of iron and examined the effect of iron deficiency on iron transfer across BeWo cell layers, a model for placental iron transfer. Transferrin receptor expression was increased at both mRNA and protein levels. Similarly, expression of the iron-responsive element (IRE)-regulated form of the divalent metal transporter 1 (DMT1) was also increased. In contrast, the non-IRE regulated isoform showed no change in mRNA levels. Protein levels of DMT1 increased significantly. Iron efflux is thought to be mediated by the metal transporter protein, IREG1/ferroportin1/MTP1, and oxidation of Fe(II) to Fe(III) prior to incorporation into fetal transferrin is carried out by the placental copper oxidase. Expression of IREG1 was not altered by iron deficiency, whereas copper oxidase activity was increased. In BeWo cells made iron deficient by treatment with desferrioxamine ('deferioxamine'), iron accumulation from iron-transferrin increased, in parallel with increased expression of the transferrin receptor. At the same time, iron efflux also increased, showing a higher flux of iron from the apical to the basolateral side. The data show that expression of placental proteins of iron transport are up-regulated in maternal iron deficiency, resulting in an increased efficiency of iron flux and a consequent minimization of the severity of fetal anaemia.

Full Text

The Full Text of this article is available as a PDF (187.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000 Jun 30;275(26):19906–19912. doi: 10.1074/jbc.M000713200. [DOI] [PubMed] [Google Scholar]
  2. Cerneus D. P., van der Ende A. Apical and basolateral transferrin receptors in polarized BeWo cells recycle through separate endosomes. J Cell Biol. 1991 Sep;114(6):1149–1158. doi: 10.1083/jcb.114.6.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crowe C., Dandekar P., Fox M., Dhingra K., Bennet L., Hanson M. A. The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol. 1995 Oct 15;488(Pt 2):515–519. doi: 10.1113/jphysiol.1995.sp020986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danzeisen R., Ponnambalam S., Lea R. G., Page K., Gambling L., McArdle H. J. The effect of ceruloplasmin on iron release from placental (BeWo) cells; evidence for an endogenous Cu oxidase. Placenta. 2000 Nov;21(8):805–812. doi: 10.1053/plac.2000.0582. [DOI] [PubMed] [Google Scholar]
  5. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
  6. Godfrey K. M., Barker D. J. Maternal nutrition in relation to fetal and placental growth. Eur J Obstet Gynecol Reprod Biol. 1995 Jul;61(1):15–22. doi: 10.1016/0028-2243(95)02148-l. [DOI] [PubMed] [Google Scholar]
  7. Kingston P. J., Bannerman C. E., Bannerman R. M. Iron deficiency anaemia in newborn sla mice: a genetic defect of placental iron transport. Br J Haematol. 1978 Oct;40(2):265–276. doi: 10.1111/j.1365-2141.1978.tb03663.x. [DOI] [PubMed] [Google Scholar]
  8. Kwik-Uribe C. L., Gietzen D., German J. B., Golub M. S., Keen C. L. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr. 2000 Nov;130(11):2821–2830. doi: 10.1093/jn/130.11.2821. [DOI] [PubMed] [Google Scholar]
  9. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  10. Lin S. J., Pufahl R. A., Dancis A., O'Halloran T. V., Culotta V. C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem. 1997 Apr 4;272(14):9215–9220. [PubMed] [Google Scholar]
  11. McArdle H. J., Douglas A. J., Bowen B. J., Morgan E. H. The mechanism of iron uptake by the rat placenta. J Cell Physiol. 1985 Sep;124(3):446–450. doi: 10.1002/jcp.1041240313. [DOI] [PubMed] [Google Scholar]
  12. McArdle H. J., Douglas A. J., Morgan E. H. Transferrin binding by microvillar vesicles isolated from rat placenta. Placenta. 1984 Mar-Apr;5(2):131–138. doi: 10.1016/s0143-4004(84)80056-9. [DOI] [PubMed] [Google Scholar]
  13. McArdle H. J., Morgan E. H. The effect of monoclonal antibodies to the human transferrin receptor on transferrin and iron uptake by rat and rabbit reticulocytes. J Biol Chem. 1984 Feb 10;259(3):1398–1400. [PubMed] [Google Scholar]
  14. McArdle H. J., Morgan E. H. Transferrin and iron movements in the rat conceptus during gestation. J Reprod Fertil. 1982 Nov;66(2):529–536. doi: 10.1530/jrf.0.0660529. [DOI] [PubMed] [Google Scholar]
  15. McArdle H. J., Tysoe J. Effect of nicotine on transferrin binding and iron uptake by cultured rat placenta. J Cell Physiol. 1988 Mar;134(3):509–513. doi: 10.1002/jcp.1041340326. [DOI] [PubMed] [Google Scholar]
  16. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000 Feb;5(2):299–309. doi: 10.1016/s1097-2765(00)80425-6. [DOI] [PubMed] [Google Scholar]
  17. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
  18. Sunderman F. W., Jr, Nomoto S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem. 1970 Nov;16(11):903–910. [PubMed] [Google Scholar]
  19. Vulpe C. D., Kuo Y. M., Murphy T. L., Cowley L., Askwith C., Libina N., Gitschier J., Anderson G. J. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999 Feb;21(2):195–199. doi: 10.1038/5979. [DOI] [PubMed] [Google Scholar]
  20. Wessling-Resnick M. Iron transport. Annu Rev Nutr. 2000;20:129–151. doi: 10.1146/annurev.nutr.20.1.129. [DOI] [PubMed] [Google Scholar]
  21. van der Ende A., du Maine A., Schwartz A. L., Strous G. J. Modulation of transferrin-receptor activity and recycling after induced differentiation of BeWo choriocarcinoma cells. Biochem J. 1990 Sep 1;270(2):451–457. doi: 10.1042/bj2700451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES