Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):907–910. doi: 10.1042/0264-6021:3560907

Cloning and characterization of human liver cytosolic beta-glycosidase.

M de Graaf 1, I C van Veen 1, I H van der Meulen-Muileman 1, W R Gerritsen 1, H M Pinedo 1, H J Haisma 1
PMCID: PMC1221920  PMID: 11389701

Abstract

Cytosolic beta-glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta-D-glycosides, including beta-D-glucoside and beta-D-galactoside. We therefore refer to this enzyme as cytosolic beta-glycosidase. We cloned the cDNA encoding the human cytosolic beta-glycosidase by performing PCR on cDNA prepared from total human liver RNA. Specific primers were based on human expressed sequence tags found in the expressed sequence tag database. The cloned cDNA contained 1407 nt with an open reading frame encoding 469 amino acid residues. Amino acid sequence analysis indicates that human cytosolic beta-glycosidase is most closely related to lactase phlorizin hydrolase and klotho protein. The enzyme was characterized by using cell lysates of COS-7 cells transfected with a eukaryotic expression vector containing the cDNA. The biochemical, kinetic and inhibition properties of the cloned enzyme were found to be identical with those reported for the enzyme purified from human liver.

Full Text

The Full Text of this article is available as a PDF (128.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan S., Gabra H., Hill F., Evan G., Sikora K. A novel tumour marker related to the c-myc oncogene product. Mol Cell Probes. 1987 Mar;1(1):73–82. doi: 10.1016/0890-8508(87)90008-9. [DOI] [PubMed] [Google Scholar]
  2. Dahlqvist A., Hammond J. B., Crane R. K., Dunphy J. V., Littman A. Intestinal lactase deficiency and lactose intolerance in adults. Preliminary report. Gastroenterology. 1968 Apr;54(4 Suppl):807–810. [PubMed] [Google Scholar]
  3. Daniels L. B., Coyle P. J., Chiao Y. B., Glew R. H., Labow R. S. Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem. 1981 Dec 25;256(24):13004–13013. [PubMed] [Google Scholar]
  4. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  5. Day A. J., DuPont M. S., Ridley S., Rhodes M., Rhodes M. J., Morgan M. R., Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998 Sep 25;436(1):71–75. doi: 10.1016/s0014-5793(98)01101-6. [DOI] [PubMed] [Google Scholar]
  6. Gopalan V., Pastuszyn A., Galey W. R., Jr, Glew R. H. Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic beta-glucosidase. J Biol Chem. 1992 Jul 15;267(20):14027–14032. [PubMed] [Google Scholar]
  7. Hays W. S., Jenison S. A., Yamada T., Pastuszyn A., Glew R. H. Primary structure of the cytosolic beta-glucosidase of guinea pig liver. Biochem J. 1996 Nov 1;319(Pt 3):829–837. doi: 10.1042/bj3190829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuro-o M., Matsumura Y., Aizawa H., Kawaguchi H., Suga T., Utsugi T., Ohyama Y., Kurabayashi M., Kaname T., Kume E. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 Nov 6;390(6655):45–51. doi: 10.1038/36285. [DOI] [PubMed] [Google Scholar]
  10. LaMarco K. L., Glew R. H. Hydrolysis of a naturally occurring beta-glucoside by a broad-specificity beta-glucosidase from liver. Biochem J. 1986 Jul 15;237(2):469–476. doi: 10.1042/bj2370469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Legler G., Bieberich E. Isolation of a cytosolic beta-glucosidase from calf liver and characterization of its active site with alkyl glucosides and basic glycosyl derivatives. Arch Biochem Biophys. 1988 Jan;260(1):427–436. doi: 10.1016/0003-9861(88)90466-3. [DOI] [PubMed] [Google Scholar]
  13. McMahon L. G., Nakano H., Levy M. D., Gregory J. F., 3rd Cytosolic pyridoxine-beta-D-glucoside hydrolase from porcine jejunal mucosa. Purification, properties, and comparison with broad specificity beta-glucosidase. J Biol Chem. 1997 Dec 19;272(51):32025–32033. doi: 10.1074/jbc.272.51.32025. [DOI] [PubMed] [Google Scholar]
  14. Mian I. S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol Dis. 1998 Jun;24(2):83–100. doi: 10.1006/bcmd.1998.9998. [DOI] [PubMed] [Google Scholar]
  15. Peters S. P., Lee R. E., Glew R. H. A microassay for Gaucher's disease. Clin Chim Acta. 1975 May 1;60(3):391–396. doi: 10.1016/0009-8981(75)90083-2. [DOI] [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yahata K., Mori K., Arai H., Koide S., Ogawa Y., Mukoyama M., Sugawara A., Ozaki S., Tanaka I., Nabeshima Y. Molecular cloning and expression of a novel klotho-related protein. J Mol Med (Berl) 2000;78(7):389–394. doi: 10.1007/s001090000131. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES