Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):39–47. doi: 10.1042/0264-6021:3570039

Protein kinase C-delta C2-like domain is a binding site for actin and enables actin redistribution in neutrophils.

G López-Lluch 1, M M Bird 1, B Canas 1, J Godovac-Zimmerman 1, A Ridley 1, A W Segal 1, L V Dekker 1
PMCID: PMC1221926  PMID: 11415434

Abstract

Neutrophils play a key role in host-defence mechanisms against invading pathogens, using their capacity to migrate, engulf micro-organisms and produce toxic radicals. Protein kinase C (PKC) isotypes are important intracellular regulators of these processes in neutrophils. PKC isotypes themselves are controlled by interactions with lipids, Ca(2+) and proteins. The C2-like domain of PKC-delta (deltaC2) has been identified as a protein-interaction domain in this PKC isotype. In the present paper we have investigated the contribution of protein interactions at this domain to the regulation/function of PKC-delta in neutrophils. Using affinity chromatography we identified actin as a deltaC2 binding partner in these cells. Fluorescein-labelled deltaC2, microinjected into immobilized neutrophils, interacts with filamentous actin (F-actin) inside the cell. PKC-delta co-localizes with F-actin in neutrophils, in lamellipodia at the leading edge of the cell. Stimulation with phorbol ester or IgG-opsonized Staphylococcus aureus results in co-ordinated redistribution of PKC-delta and F-actin, and a PKC-delta inhibitor inhibits these changes. Microinjection of deltaC2 also inhibits F-actin redistribution. Thus PKC-delta binds to F-actin through its C2 domain, and these interactions are important in regulating actin redistribution in neutrophils.

Full Text

The Full Text of this article is available as a PDF (304.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aigner L., Caroni P. Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J Cell Biol. 1995 Feb;128(4):647–660. doi: 10.1083/jcb.128.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry S. T., Critchley D. R. The RhoA-dependent assembly of focal adhesions in Swiss 3T3 cells is associated with increased tyrosine phosphorylation and the recruitment of both pp125FAK and protein kinase C-delta to focal adhesions. J Cell Sci. 1994 Jul;107(Pt 7):2033–2045. doi: 10.1242/jcs.107.7.2033. [DOI] [PubMed] [Google Scholar]
  3. Csukai M., Chen C. H., De Matteis M. A., Mochly-Rosen D. The coatomer protein beta'-COP, a selective binding protein (RACK) for protein kinase Cepsilon. J Biol Chem. 1997 Nov 14;272(46):29200–29206. doi: 10.1074/jbc.272.46.29200. [DOI] [PubMed] [Google Scholar]
  4. Dekker L. V., Leitges M., Altschuler G., Mistry N., McDermott A., Roes J., Segal A. W. Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J. 2000 Apr 1;347(Pt 1):285–289. [PMC free article] [PubMed] [Google Scholar]
  5. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  6. Dekker L. V., Parker P. J. Regulated binding of the protein kinase C substrate GAP-43 to the V0/C2 region of protein kinase C-delta. J Biol Chem. 1997 May 9;272(19):12747–12753. doi: 10.1074/jbc.272.19.12747. [DOI] [PubMed] [Google Scholar]
  7. Dekker L. V., Segal A. W. Perspectives: signal transduction. Signals to move cells. Science. 2000 Feb 11;287(5455):982-3, 985. doi: 10.1126/science.287.5455.982. [DOI] [PubMed] [Google Scholar]
  8. Downey G. P., Chan C. K., Lea P., Takai A., Grinstein S. Phorbol ester-induced actin assembly in neutrophils: role of protein kinase C. J Cell Biol. 1992 Feb;116(3):695–706. doi: 10.1083/jcb.116.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felsch A., Stöcker K., Borchard U. Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonists. J Immunol. 1995 Jul 1;155(1):333–338. [PubMed] [Google Scholar]
  10. Gabler W. L., Bullock W. W., Creamer H. R. Phorbol myristate acetate induction of chemotactic migration of human polymorphonuclear neutrophils. Inflammation. 1993 Aug;17(4):521–530. doi: 10.1007/BF00916591. [DOI] [PubMed] [Google Scholar]
  11. Grogan A., Reeves E., Keep N., Wientjes F., Totty N. F., Burlingame A. L., Hsuan J. J., Segal A. W. Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J Cell Sci. 1997 Dec;110(Pt 24):3071–3081. doi: 10.1242/jcs.110.24.3071. [DOI] [PubMed] [Google Scholar]
  12. Gschwendt M., Müller H. J., Kielbassa K., Zang R., Kittstein W., Rincke G., Marks F. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994 Feb 28;199(1):93–98. doi: 10.1006/bbrc.1994.1199. [DOI] [PubMed] [Google Scholar]
  13. Gschwendt M. Protein kinase C delta. Eur J Biochem. 1999 Feb;259(3):555–564. doi: 10.1046/j.1432-1327.1999.00120.x. [DOI] [PubMed] [Google Scholar]
  14. Jaken S., Parker P. J. Protein kinase C binding partners. Bioessays. 2000 Mar;22(3):245–254. doi: 10.1002/(SICI)1521-1878(200003)22:3<245::AID-BIES6>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  15. Kent J. D., Sergeant S., Burns D. J., McPhail L. C. Identification and regulation of protein kinase C-delta in human neutrophils. J Immunol. 1996 Nov 15;157(10):4641–4647. [PubMed] [Google Scholar]
  16. Korchak H. M., Rossi M. W., Kilpatrick L. E. Selective role for beta-protein kinase C in signaling for O-2 generation but not degranulation or adherence in differentiated HL60 cells. J Biol Chem. 1998 Oct 16;273(42):27292–27299. doi: 10.1074/jbc.273.42.27292. [DOI] [PubMed] [Google Scholar]
  17. Lee M. H., Bell R. M. The lipid binding, regulatory domain of protein kinase C. A 32-kDa fragment contains the calcium- and phosphatidylserine-dependent phorbol diester binding activity. J Biol Chem. 1986 Nov 15;261(32):14867–14870. [PubMed] [Google Scholar]
  18. Lewis J. M., Cheresh D. A., Schwartz M. A. Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol. 1996 Sep;134(5):1323–1332. doi: 10.1083/jcb.134.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Medkova M., Cho W. Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues. J Biol Chem. 1998 Jul 10;273(28):17544–17552. doi: 10.1074/jbc.273.28.17544. [DOI] [PubMed] [Google Scholar]
  20. Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem J. 1998 Jun 1;332(Pt 2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mochly-Rosen D., Khaner H., Lopez J., Smith B. L. Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme. J Biol Chem. 1991 Aug 15;266(23):14866–14868. [PubMed] [Google Scholar]
  22. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  23. Newton A. C., Johnson J. E. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta. 1998 Aug 21;1376(2):155–172. doi: 10.1016/s0304-4157(98)00003-3. [DOI] [PubMed] [Google Scholar]
  24. Ono Y., Fujii T., Igarashi K., Kuno T., Tanaka C., Kikkawa U., Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4868–4871. doi: 10.1073/pnas.86.13.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pappa H., Dekker L. V., Parker P. J., McDonald N. Q. Preliminary X-ray analysis of a C2-like domain from protein kinase C-delta. Acta Crystallogr D Biol Crystallogr. 1998 Jul 1;54(Pt 4):693–696. doi: 10.1107/s0907444997019732. [DOI] [PubMed] [Google Scholar]
  26. Pappa H., Murray-Rust J., Dekker L. V., Parker P. J., McDonald N. Q. Crystal structure of the C2 domain from protein kinase C-delta. Structure. 1998 Jul 15;6(7):885–894. doi: 10.1016/s0969-2126(98)00090-2. [DOI] [PubMed] [Google Scholar]
  27. Parekh D. B., Ziegler W., Parker P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 2000 Feb 15;19(4):496–503. doi: 10.1093/emboj/19.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parent C. A., Devreotes P. N. A cell's sense of direction. Science. 1999 Apr 30;284(5415):765–770. doi: 10.1126/science.284.5415.765. [DOI] [PubMed] [Google Scholar]
  29. Pongracz J., Lord J. M. Superoxide production in human neutrophils: evidence for signal redundancy and the involvement of more than one PKC isoenzyme class. Biochem Biophys Res Commun. 1998 Jun 29;247(3):624–629. doi: 10.1006/bbrc.1998.8867. [DOI] [PubMed] [Google Scholar]
  30. Prekeris R., Mayhew M. W., Cooper J. B., Terrian D. M. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol. 1996 Jan;132(1-2):77–90. doi: 10.1083/jcb.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Quest A. F., Bardes E. S., Bell R. M. A phorbol ester binding domain of protein kinase C gamma. Deletion analysis of the Cys2 domain defines a minimal 43-amino acid peptide. J Biol Chem. 1994 Jan 28;269(4):2961–2970. [PubMed] [Google Scholar]
  32. Quest A. F., Bardes E. S., Bell R. M. A phorbol ester binding domain of protein kinase C gamma. High affinity binding to a glutathione-S-transferase/Cys2 fusion protein. J Biol Chem. 1994 Jan 28;269(4):2953–2960. [PubMed] [Google Scholar]
  33. Reeves E. P., Dekker L. V., Forbes L. V., Wientjes F. B., Grogan A., Pappin D. J., Segal A. W. Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils. Biochem J. 1999 Dec 15;344(Pt 3):859–866. [PMC free article] [PubMed] [Google Scholar]
  34. Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):839–843. doi: 10.1073/pnas.91.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schumann M. A., Raffin T. A. Activation of a voltage-dependent chloride current in human neutrophils by phorbol 12-myristate 13-acetate and formyl-methionyl-leucyl-phenylalanine. The role of protein kinase C. J Biol Chem. 1994 Jan 28;269(4):2389–2398. [PubMed] [Google Scholar]
  36. Segal A. W., Jones O. T. Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett. 1980 Jan 28;110(1):111–114. doi: 10.1016/0014-5793(80)80035-4. [DOI] [PubMed] [Google Scholar]
  37. Sergeant S., McPhail L. C. Opsonized zymosan stimulates the redistribution of protein kinase C isoforms in human neutrophils. J Immunol. 1997 Sep 15;159(6):2877–2885. [PubMed] [Google Scholar]
  38. Shao X., Davletov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 1996 Jul 12;273(5272):248–251. doi: 10.1126/science.273.5272.248. [DOI] [PubMed] [Google Scholar]
  39. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  40. Sutton R. B., Sprang S. R. Structure of the protein kinase Cbeta phospholipid-binding C2 domain complexed with Ca2+. Structure. 1998 Nov 15;6(11):1395–1405. doi: 10.1016/s0969-2126(98)00139-7. [DOI] [PubMed] [Google Scholar]
  41. Vuori K., Ruoslahti E. Activation of protein kinase C precedes alpha 5 beta 1 integrin-mediated cell spreading on fibronectin. J Biol Chem. 1993 Oct 15;268(29):21459–21462. [PubMed] [Google Scholar]
  42. Watters D., Garrone B., Gobert G., Williams S., Gardiner R., Lavin M. Bistratene A causes phosphorylation of talin and redistribution of actin microfilaments in fibroblasts: possible role for PKC-delta. Exp Cell Res. 1996 Dec 15;229(2):327–335. doi: 10.1006/excr.1996.0378. [DOI] [PubMed] [Google Scholar]
  43. Watts R. G., Howard T. H. Evidence for a gelsolin-rich, labile F-actin pool in human polymorphonuclear leukocytes. Cell Motil Cytoskeleton. 1992;21(1):25–37. doi: 10.1002/cm.970210104. [DOI] [PubMed] [Google Scholar]
  44. Watts R. G., Howard T. H. Role of tropomyosin, alpha-actinin, and actin binding protein 280 in stabilizing Triton insoluble F-actin in basal and chemotactic factor activated neutrophils. Cell Motil Cytoskeleton. 1994;28(2):155–164. doi: 10.1002/cm.970280207. [DOI] [PubMed] [Google Scholar]
  45. Weiner O. D., Servant G., Welch M. D., Mitchison T. J., Sedat J. W., Bourne H. R. Spatial control of actin polymerization during neutrophil chemotaxis. Nat Cell Biol. 1999 Jun;1(2):75–81. doi: 10.1038/10042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Woods A., Couchman J. R. Protein kinase C involvement in focal adhesion formation. J Cell Sci. 1992 Feb;101(Pt 2):277–290. doi: 10.1242/jcs.101.2.277. [DOI] [PubMed] [Google Scholar]
  47. Zhang G., Kazanietz M. G., Blumberg P. M., Hurley J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell. 1995 Jun 16;81(6):917–924. doi: 10.1016/0092-8674(95)90011-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES