Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):65–72. doi: 10.1042/0264-6021:3570065

Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens.

J G Vontas 1, G J Small 1, J Hemingway 1
PMCID: PMC1221929  PMID: 11415437

Abstract

Selection of a laboratory colony of the brown planthopper Nilaparvata lugens with the pyrethroids permethrin and lambda-cyhalothrin increased its resistance to both insecticides. Biochemical analysis and synergistic studies with metabolic inhibitors indicated that elevated glutathione S-transferases (GSTs) with a predominant peroxidase activity conferred resistance to both pyrethroids, whereas esterases conferred part of the resistance to permethrin. Purified esterases hydrolysed permethrin at a slow rate, but incubation of either pyrethroid or their primary metabolites with partially purified GSTs had no effect on the metabolic profile. Although GSTs were sensitive to inhibition by both pyrethroids, they did not serve as binding proteins, as previously hypothesized [Grant and Matsumura (1988) Insect Biochem. 18, 615-622]. We demonstrate that pyrethroids, in addition to their neurotoxic effect, induce oxidative stress and lipid peroxidation in insects. Pyrethroid exposure induced lipid peroxides, protein oxidation and depleted reduced glutathione. Elevated GSTs in the resistant strains attenuated the pyrethroid-induced lipid peroxidation and reduced mortality, whereas their in vivo inhibition eliminated their protective role. We therefore hypothesize that the main role of elevated GSTs in conferring resistance in N. lugens is through protecting tissues from oxidative damage. Our study extends the GSTs' range of efficacy to pyrethroid insecticides and possibly explains the role of elevated GSTs in other pyrethroid-resistant insects.

Full Text

The Full Text of this article is available as a PDF (192.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachowski S., Xu Y., Stevenson D. E., Walborg E. F., Jr, Klaunig J. E. Role of oxidative stress in the selective toxicity of dieldrin in the mouse liver. Toxicol Appl Pharmacol. 1998 Jun;150(2):301–309. doi: 10.1006/taap.1998.8372. [DOI] [PubMed] [Google Scholar]
  2. Bagchi D., Hassoun E. A., Bagchi M., Stohs S. J. Protective effects of antioxidants against endrin-induced hepatic lipid peroxidation, DNA damage, and excretion of urinary lipid metabolites. Free Radic Biol Med. 1993 Aug;15(2):217–222. doi: 10.1016/0891-5849(93)90062-y. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brogdon W. G., McAllister J. C., Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997 Sep;13(3):233–237. [PubMed] [Google Scholar]
  5. Chinopoulos C., Tretter L., Rozsa A., Adam-Vizi V. Exacerbated responses to oxidative stress by an Na(+) load in isolated nerve terminals: the role of ATP depletion and rise of [Ca(2+)](i). J Neurosci. 2000 Mar 15;20(6):2094–2103. doi: 10.1523/JNEUROSCI.20-06-02094.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. G. The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B. 1989;92(3):419–446. doi: 10.1016/0305-0491(89)90114-4. [DOI] [PubMed] [Google Scholar]
  7. Fournier D., Bride J. M., Poirie M., Bergé J. B., Plapp F. W., Jr Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem. 1992 Jan 25;267(3):1840–1845. [PubMed] [Google Scholar]
  8. Gassner B., Wüthrich A., Scholtysik G., Solioz M. The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther. 1997 May;281(2):855–860. [PubMed] [Google Scholar]
  9. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  10. Hadnagy W., Seemayer N. H., Kühn K. H., Leng G., Idel H. Induction of mitotic cell division distrubances and mitotic arrest by pyrethroids in V79 cell cultures. Toxicol Lett. 1999 Jun 30;107(1-3):81–87. doi: 10.1016/s0378-4274(99)00034-x. [DOI] [PubMed] [Google Scholar]
  11. Hai D. Q., Varga S. I., Matkovics B. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997 May;117(1):83–88. doi: 10.1016/s0742-8413(96)00234-4. [DOI] [PubMed] [Google Scholar]
  12. Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. doi: 10.1080/10715769900300851. [DOI] [PubMed] [Google Scholar]
  13. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  14. Hermes-Lima M., Willmore W. G., Storey K. B. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med. 1995 Sep;19(3):271–280. doi: 10.1016/0891-5849(95)00020-x. [DOI] [PubMed] [Google Scholar]
  15. Kadous A., Matsumura F., Enan E. High affinity binding of 3H-verapamil to rat brain synaptic membrane is antagonized by pyrethroid insecticides. J Environ Sci Health B. 1994 Sep;29(5):855–871. doi: 10.1080/03601239409372907. [DOI] [PubMed] [Google Scholar]
  16. Kale M., Rathore N., John S., Bhatnagar D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett. 1999 Apr 12;105(3):197–205. doi: 10.1016/s0378-4274(98)00399-3. [DOI] [PubMed] [Google Scholar]
  17. Klimek J. Cytochrome P-450 involvement in the NADPH-dependent lipid peroxidation in human placental mitochondria. Biochim Biophys Acta. 1990 May 1;1044(1):158–164. doi: 10.1016/0005-2760(90)90231-l. [DOI] [PubMed] [Google Scholar]
  18. Klimek J., Woźniak M., Szymańska G., Zelewski L. Inhibitory effect of free radicals derived from organic hydroperoxide on progesterone synthesis in human term placental mitochondria. Free Radic Biol Med. 1998 May;24(7-8):1168–1175. doi: 10.1016/s0891-5849(97)00442-5. [DOI] [PubMed] [Google Scholar]
  19. Maiti P. K., Kar A., Gupta P., Chaurasia S. S. Loss of membrane integrity and inhibition of type-I iodothyronine 5'-monodeiodinase activity by fenvalerate in female mouse. Biochem Biophys Res Commun. 1995 Sep 25;214(3):905–909. doi: 10.1006/bbrc.1995.2372. [DOI] [PubMed] [Google Scholar]
  20. Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., Mattson M. P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem. 1997 Jan;68(1):255–264. doi: 10.1046/j.1471-4159.1997.68010255.x. [DOI] [PubMed] [Google Scholar]
  21. Parkes T. L., Hilliker A. J., Phillips J. P. Genetic and biochemical analysis of glutathione-S-transferase in the oxygen defense system of Drosophila melanogaster. Genome. 1993 Dec;36(6):1007–1014. doi: 10.1139/g93-134. [DOI] [PubMed] [Google Scholar]
  22. Ranson H., Collins F., Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14284–14289. doi: 10.1073/pnas.95.24.14284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ranson H., Cornel A. J., Fournier D., Vaughan A., Collins F. H., Hemingway J. Cloning and localization of a glutathione S-transferase class I gene from Anopheles gambiae. J Biol Chem. 1997 Feb 28;272(9):5464–5468. doi: 10.1074/jbc.272.9.5464. [DOI] [PubMed] [Google Scholar]
  24. Ranson H., Prapanthadara L. a., Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997 May 15;324(Pt 1):97–102. doi: 10.1042/bj3240097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reddy P. M., Philip G. H., Bashamohideen M. Inhibition of Mg2+ and Na(+)-K+ ATPases in selected tissues of fish, Cyprinus carpio under fenvalerate toxicity. Biochem Int. 1991 Mar;23(4):715–721. [PubMed] [Google Scholar]
  26. Reznick A. Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363. doi: 10.1016/s0076-6879(94)33041-7. [DOI] [PubMed] [Google Scholar]
  27. Shono T., Ohsawa K., Casida J. E. Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, and decamethrin by microsomal enzymes. J Agric Food Chem. 1979 Mar-Apr;27(2):316–325. doi: 10.1021/jf60222a059. [DOI] [PubMed] [Google Scholar]
  28. Simmons T. W., Jamall I. S., Lockshin R. A. Selenium-independent glutathione peroxidase activity associated with glutathione S-transferase from the housefly, Musca domestica. Comp Biochem Physiol B. 1989;94(2):323–327. doi: 10.1016/0305-0491(89)90350-7. [DOI] [PubMed] [Google Scholar]
  29. Small G. J., Hemingway J. Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens Stål. Insect Biochem Mol Biol. 2000 Jun;30(6):443–453. doi: 10.1016/s0965-1748(00)00007-2. [DOI] [PubMed] [Google Scholar]
  30. Spiteller G. Enzymic lipid peroxidation--a consequence of cell injury? Free Radic Biol Med. 1996;21(7):1003–1009. doi: 10.1016/s0891-5849(96)00268-7. [DOI] [PubMed] [Google Scholar]
  31. Vontas J. G., Small G. J., Hemingway J. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål). Insect Mol Biol. 2000 Dec;9(6):655–660. doi: 10.1046/j.1365-2583.2000.00228.x. [DOI] [PubMed] [Google Scholar]
  32. White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol Ther. 1991;49(1-2):21–42. doi: 10.1016/0163-7258(91)90020-m. [DOI] [PubMed] [Google Scholar]
  33. Zlotkin E. The insect voltage-gated sodium channel as target of insecticides. Annu Rev Entomol. 1999;44:429–455. doi: 10.1146/annurev.ento.44.1.429. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES