Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):73–81. doi: 10.1042/0264-6021:3570073

Identification of the glycosylation sites utilized on the V1a vasopressin receptor and assessment of their role in receptor signalling and expression.

S R Hawtin 1, A R Davies 1, G Matthews 1, M Wheatley 1
PMCID: PMC1221930  PMID: 11415438

Abstract

Most of the large family of G-protein-coupled receptors (GPCRs) possess putative N-glycosylation sites within their N-termini. However, for the vast majority of GPCRs, it has not been determined which, if any, of the consensus glycosylation sites are actually utilized or what the functional ramifications are of modification by oligosaccharide. The occurrence and function of glycosylation of the V(1a) vasopressin receptor (V(1a)R) has been investigated in this study. Using a combination of translation systems that are either glycosylation-competent or do not support glycosylation, we established that of the four putative N-glycosylation sites at Asn(14), Asn(27), Asn(198) and Asn(333) only the first three sites are actually modified by carbohydrate. This was confirmed by disruption of consensus sites by site-directed mutagenesis, individually and in combination. The V(1a)R is not O-glycosylated. The functionality of a series of glycosylation-defective V(1a)R constructs was characterized after expression in HEK 293T cells. It was found that carbohydrate moieties are not required for the receptor to bind any of the four classes of ligand available, or for intracellular signalling. The glycosylation status of the V(1a)R did, however, regulate the level of total receptor expression and also the abundance of receptor at the cell surface. Furthermore, the nature of this regulation (increased or decreased expression) was dictated by the locus of the oligosaccharide modification. Modification of any one of the consensus sites alone, however, was sufficient for wild-type expression, indicating a redundancy within the glycosylation sites. A role for the carbohydrate in the correct folding or stabilization of the V(1a)R is indicated. Glycosylation is not required, however, for efficient trafficking of the receptor to the cell surface. This study establishes the functional importance of N-glycosylation of the V(1a)R.

Full Text

The Full Text of this article is available as a PDF (233.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnbaumer M., Seibold A., Gilbert S., Ishido M., Barberis C., Antaramian A., Brabet P., Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992 May 28;357(6376):333–335. doi: 10.1038/357333a0. [DOI] [PubMed] [Google Scholar]
  2. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  3. Couvineau A., Fabre C., Gaudin P., Maoret J. J., Laburthe M. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane. Biochemistry. 1996 Feb 13;35(6):1745–1752. doi: 10.1021/bi952022h. [DOI] [PubMed] [Google Scholar]
  4. Davidson J. S., Flanagan C. A., Zhou W., Becker I. I., Elario R., Emeran W., Sealfon S. C., Millar R. P. Identification of N-glycosylation sites in the gonadotropin-releasing hormone receptor: role in receptor expression but not ligand binding. Mol Cell Endocrinol. 1995 Feb;107(2):241–245. doi: 10.1016/0303-7207(94)03449-4. [DOI] [PubMed] [Google Scholar]
  5. Davidson J. S., McArdle C. A., Davies P., Elario R., Flanagan C. A., Millar R. P. Asn102 of the gonadotropin-releasing hormone receptor is a critical determinant of potency for agonists containing C-terminal glycinamide. J Biol Chem. 1996 Jun 28;271(26):15510–15514. doi: 10.1074/jbc.271.26.15510. [DOI] [PubMed] [Google Scholar]
  6. Davis D. P., Rozell T. G., Liu X., Segaloff D. L. The six N-linked carbohydrates of the lutropin/choriogonadotropin receptor are not absolutely required for correct folding, cell surface expression, hormone binding, or signal transduction. Mol Endocrinol. 1997 May;11(5):550–562. doi: 10.1210/mend.11.5.9927. [DOI] [PubMed] [Google Scholar]
  7. Davis D., Liu X., Segaloff D. L. Identification of the sites of N-linked glycosylation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol. 1995 Feb;9(2):159–170. doi: 10.1210/mend.9.2.7776966. [DOI] [PubMed] [Google Scholar]
  8. Fukushima Y., Oka Y., Saitoh T., Katagiri H., Asano T., Matsuhashi N., Takata K., van Breda E., Yazaki Y., Sugano K. Structural and functional analysis of the canine histamine H2 receptor by site-directed mutagenesis: N-glycosylation is not vital for its action. Biochem J. 1995 Sep 1;310(Pt 2):553–558. doi: 10.1042/bj3100553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hawtin S. R., Howard H. C., Wheatley M. Identification of an extracellular segment of the oxytocin receptor providing agonist-specific binding epitopes. Biochem J. 2001 Mar 1;354(Pt 2):465–472. doi: 10.1042/0264-6021:3540465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawtin S. R., Wesley V. J., Parslow R. A., Patel S., Wheatley M. Critical role of a subdomain of the N-terminus of the V1a vasopressin receptor for binding agonists but not antagonists; functional rescue by the oxytocin receptor N-terminus. Biochemistry. 2000 Nov 7;39(44):13524–13533. doi: 10.1021/bi0013400. [DOI] [PubMed] [Google Scholar]
  11. Howl J., Langel U., Hawtin S. R., Valkna A., Yarwood N. J., Saar K., Wheatley M. Chimeric strategies for the rational design of bioactive analogs of small peptide hormones. FASEB J. 1997 Jun;11(7):582–590. doi: 10.1096/fasebj.11.7.9212082. [DOI] [PubMed] [Google Scholar]
  12. Howl J., Rudge S. A., Lavis R. A., Davies A. R., Parslow R. A., Hughes P. J., Kirk C. J., Michell R. H., Wheatley M. Rat testicular myoid cells express vasopressin receptors: receptor structure, signal transduction, and developmental regulation. Endocrinology. 1995 May;136(5):2206–2213. doi: 10.1210/endo.136.5.7536665. [DOI] [PubMed] [Google Scholar]
  13. Howl J., Wang X., Kirk C. J., Wheatley M. Fluorescent and biotinylated linear peptides as selective bifunctional ligands for the V1a vasopressin receptor. Eur J Biochem. 1993 Apr 15;213(2):711–719. doi: 10.1111/j.1432-1033.1993.tb17811.x. [DOI] [PubMed] [Google Scholar]
  14. Howl J., Wheatley M. Molecular pharmacology of V1a vasopressin receptors. Gen Pharmacol. 1995 Oct;26(6):1143–1152. doi: 10.1016/0306-3623(95)00016-t. [DOI] [PubMed] [Google Scholar]
  15. Howl J., Wheatley M. Molecular recognition of peptide and non-peptide ligands by the extracellular domains of neurohypophysial hormone receptors. Biochem J. 1996 Jul 15;317(Pt 2):577–582. doi: 10.1042/bj3170577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howl J., Yarwood N. J., Davies A. R., Wheatley M. Renal bradykinin and vasopressin receptors: ligand selectivity and classification. Kidney Int. 1996 Aug;50(2):586–592. doi: 10.1038/ki.1996.353. [DOI] [PubMed] [Google Scholar]
  17. Hutchins A. M., Phillips P. A., Venter D. J., Burrell L. M., Johnston C. I. Molecular cloning and sequencing of the gene encoding a sheep arginine vasopressin type 1a receptor. Biochim Biophys Acta. 1995 Sep 19;1263(3):266–270. doi: 10.1016/0167-4781(95)00125-z. [DOI] [PubMed] [Google Scholar]
  18. Innamorati G., Sadeghi H., Birnbaumer M. A fully active nonglycosylated V2 vasopressin receptor. Mol Pharmacol. 1996 Sep;50(3):467–473. [PubMed] [Google Scholar]
  19. Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
  20. Jard S., Gaillard R. C., Guillon G., Marie J., Schoenenberg P., Muller A. F., Manning M., Sawyer W. H. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol. 1986 Aug;30(2):171–177. [PubMed] [Google Scholar]
  21. Kaushal S., Ridge K. D., Khorana H. G. Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4024–4028. doi: 10.1073/pnas.91.9.4024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kikuchi S., Tanoue A., Goda N., Matsuo N., Tsujimoto G. Structure and sequence of the mouse V1a and V1b vasopressin receptor genes. Jpn J Pharmacol. 1999 Dec;81(4):388–392. doi: 10.1254/jjp.81.388. [DOI] [PubMed] [Google Scholar]
  23. Kimura T., Makino Y., Bathgate R., Ivell R., Nobunaga T., Kubota Y., Kumazawa I., Saji F., Murata Y., Nishihara T. The role of N-terminal glycosylation in the human oxytocin receptor. Mol Hum Reprod. 1997 Nov;3(11):957–963. doi: 10.1093/molehr/3.11.957. [DOI] [PubMed] [Google Scholar]
  24. Kimura T., Tanizawa O., Mori K., Brownstein M. J., Okayama H. Structure and expression of a human oxytocin receptor. Nature. 1992 Apr 9;356(6369):526–529. doi: 10.1038/356526a0. [DOI] [PubMed] [Google Scholar]
  25. Kojro E., Eich P., Gimpl G., Fahrenholz F. Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor. Biochemistry. 1993 Dec 14;32(49):13537–13544. doi: 10.1021/bi00212a020. [DOI] [PubMed] [Google Scholar]
  26. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  27. Kusui T., Benya R. V., Battey J. F., Jensen R. T. Glycosylation of bombesin receptors: characterization, effect on binding, and G-protein coupling. Biochemistry. 1994 Nov 8;33(44):12968–12980. doi: 10.1021/bi00248a005. [DOI] [PubMed] [Google Scholar]
  28. Lanctôt P. M., Leclerc P. C., Escher E., Leduc R., Guillemette G. Role of N-glycosylation in the expression and functional properties of human AT1 receptor. Biochemistry. 1999 Jul 6;38(27):8621–8627. doi: 10.1021/bi9830516. [DOI] [PubMed] [Google Scholar]
  29. Landolt-Marticorena C., Reithmeier R. A. Asparagine-linked oligosaccharides are localized to single extracytosolic segments in multi-span membrane glycoproteins. Biochem J. 1994 Aug 15;302(Pt 1):253–260. doi: 10.1042/bj3020253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Libert F., Parmentier M., Lefort A., Dinsart C., Van Sande J., Maenhaut C., Simons M. J., Dumont J. E., Vassart G. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science. 1989 May 5;244(4904):569–572. doi: 10.1126/science.2541503. [DOI] [PubMed] [Google Scholar]
  31. Lolait S. J., O'Carroll A. M., McBride O. W., Konig M., Morel A., Brownstein M. J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992 May 28;357(6376):336–339. doi: 10.1038/357336a0. [DOI] [PubMed] [Google Scholar]
  32. Mahlmann S., Meyerhof W., Hausmann H., Heierhorst J., Schönrock C., Zwiers H., Lederis K., Richter D. Structure, function, and phylogeny of [Arg8]vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1342–1345. doi: 10.1073/pnas.91.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matthews G., Colman A. A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs. Nucleic Acids Res. 1991 Dec 11;19(23):6405–6412. doi: 10.1093/nar/19.23.6405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
  35. Morel A., O'Carroll A. M., Brownstein M. J., Lolait S. J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 1992 Apr 9;356(6369):523–526. doi: 10.1038/356523a0. [DOI] [PubMed] [Google Scholar]
  36. Piersen C. E., True C. D., Wells J. N. A carboxyl-terminally truncated mutant and nonglycosylated A2a adenosine receptors retain ligand binding. Mol Pharmacol. 1994 May;45(5):861–870. [PubMed] [Google Scholar]
  37. Powner D., Davey J. Activation of the kexin from Schizosaccharomyces pombe requires internal cleavage of its initially cleaved prosequence. Mol Cell Biol. 1998 Jan;18(1):400–408. doi: 10.1128/mcb.18.1.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rands E., Candelore M. R., Cheung A. H., Hill W. S., Strader C. D., Dixon R. A. Mutational analysis of beta-adrenergic receptor glycosylation. J Biol Chem. 1990 Jun 25;265(18):10759–10764. [PubMed] [Google Scholar]
  39. Rens-Domiano S., Reisine T. Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J Biol Chem. 1991 Oct 25;266(30):20094–20102. [PubMed] [Google Scholar]
  40. Russo D., Chazenbalk G. D., Nagayama Y., Wadsworth H. L., Rapoport B. Site-directed mutagenesis of the human thyrotropin receptor: role of asparagine-linked oligosaccharides in the expression of a functional receptor. Mol Endocrinol. 1991 Jan;5(1):29–33. doi: 10.1210/mend-5-1-29. [DOI] [PubMed] [Google Scholar]
  41. Sadeghi H., Birnbaumer M. O-Glycosylation of the V2 vasopressin receptor. Glycobiology. 1999 Jul;9(7):731–737. doi: 10.1093/glycob/9.7.731. [DOI] [PubMed] [Google Scholar]
  42. Serradeil-Le Gal C., Wagnon J., Garcia C., Lacour C., Guiraudou P., Christophe B., Villanova G., Nisato D., Maffrand J. P., Le Fur G. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest. 1993 Jul;92(1):224–231. doi: 10.1172/JCI116554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shakin-Eshleman S. H., Spitalnik S. L., Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. J Biol Chem. 1996 Mar 15;271(11):6363–6366. doi: 10.1074/jbc.271.11.6363. [DOI] [PubMed] [Google Scholar]
  44. Thibonnier M., Auzan C., Madhun Z., Wilkins P., Berti-Mattera L., Clauser E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem. 1994 Feb 4;269(5):3304–3310. [PubMed] [Google Scholar]
  45. Ufer E., Postina R., Gorbulev V., Fahrenholz F. An extracellular residue determines the agonist specificity of V2 vasopressin receptors. FEBS Lett. 1995 Mar 27;362(1):19–23. doi: 10.1016/0014-5793(95)00150-8. [DOI] [PubMed] [Google Scholar]
  46. Wheatley M., Howl J., Morel A., Davies A. R. Homology between neurohypophyseal hormone receptors. Biochem J. 1993 Dec 1;296(Pt 2):519–519. doi: 10.1042/bj2960519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wheatley M., Howl J., Yarwood N. J., Davies A. R., Parslow R. A. Preparation of a membrane fraction for receptor studies and solubilization of receptor proteins with retention of biological activity. Methods Mol Biol. 1997;73:305–322. doi: 10.1385/0-89603-399-6:305. [DOI] [PubMed] [Google Scholar]
  48. Wheatley M. Understanding neurotransmitter receptors: molecular biology-based strategies. Essays Biochem. 1998;33:15–27. doi: 10.1042/bse0330015. [DOI] [PubMed] [Google Scholar]
  49. de Keyzer Y., Auzan C., Lenne F., Beldjord C., Thibonnier M., Bertagna X., Clauser E. Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett. 1994 Dec 19;356(2-3):215–220. doi: 10.1016/0014-5793(94)01268-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES