Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):83–95. doi: 10.1042/0264-6021:3570083

Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding.

B Kramer 1, D M Ferrari 1, P Klappa 1, N Pöhlmann 1, H D Söling 1
PMCID: PMC1221931  PMID: 11415439

Abstract

The rat luminal endoplasmic-recticulum calcium-binding proteins 1 and 2 (CaBP1 and CaBP2 respectively) are members of the protein disulphide-isomerase (PDI) family. They contain two and three thioredoxin boxes (Cys-Gly-His-Cys) respectively and, like PDI, may be involved in the folding of nascent proteins. We demonstrate here that CaBP1, similar to PDI and CaBP2, can complement the lethal phenotype of the disrupted Saccharomyces cerevisiae PDI gene, provided that the natural C-terminal Lys-Asp-Glu-Leu sequence is replaced by His-Asp-Glu-Leu. Both the in vitro RNase AIII-re-activation assays and in vivo pro-(carboxypeptidase Y) processing assays using CaBP1 and CaBP2 thioredoxin (trx)-box mutants revealed that, whereas the three trx boxes in CaBP2 seem to be functionally equivalent, the first trx box of CaBP1 is significantly more active than the second trx box. Furthermore, only about 65% re-activation of denatured reduced RNase AIII could be obtained with CaBP1 or CaBP2 compared with PDI, and the yield of PDI-catalysed reactions was significantly reduced in the presence of either CaBP1 or CaBP2. In contrast with PDI, neither CaBP1 nor CaBP2 could catalyse the renaturation of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a redox-independent process, and neither protein had any effect on the PDI-catalysed refolding of GAPDH. Furthermore, although PDI can bind peptides via its b' domain, a property it shares with PDIp, the pancreas-specific PDI homologue, and although PDI can bind malfolded proteins such as 'scrambled' ribonuclease, no such interactions could be detected for CaBP2. We conclude that: (1) both CaBP2 and CaBP1 lack peptide-binding activity for GAPDH attributed to the C-terminal region of the a' domain of PDI; (2) CaBP2 lacks the general peptide-binding activity attributed to the b' domain of PDI; (3) interaction of CaBP2 with substrate (RNase AIII) is different from that of PDI and substrate; and (4) both CaBP2 and CaBP1 may promote oxidative folding by different kinetic pathways.

Full Text

The Full Text of this article is available as a PDF (506.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cai H., Wang C. C., Tsou C. L. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem. 1994 Oct 7;269(40):24550–24552. [PubMed] [Google Scholar]
  4. Chivers P. T., Laboissière M. C., Raines R. T. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 1996 Jun 3;15(11):2659–2667. [PMC free article] [PubMed] [Google Scholar]
  5. Dai Y., Wang C. A mutant truncated protein disulfide isomerase with no chaperone activity. J Biol Chem. 1997 Oct 31;272(44):27572–27576. doi: 10.1074/jbc.272.44.27572. [DOI] [PubMed] [Google Scholar]
  6. Darby N. J., Creighton T. E. Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry. 1995 Sep 19;34(37):11725–11735. doi: 10.1021/bi00037a009. [DOI] [PubMed] [Google Scholar]
  7. Darby N. J., Penka E., Vincentelli R. The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol. 1998 Feb 13;276(1):239–247. doi: 10.1006/jmbi.1997.1504. [DOI] [PubMed] [Google Scholar]
  8. Desilva M. G., Lu J., Donadel G., Modi W. S., Xie H., Notkins A. L., Lan M. S. Characterization and chromosomal localization of a new protein disulfide isomerase, PDIp, highly expressed in human pancreas. DNA Cell Biol. 1996 Jan;15(1):9–16. doi: 10.1089/dna.1996.15.9. [DOI] [PubMed] [Google Scholar]
  9. Ferrari D. M., Nguyen Van P., Kratzin H. D., Söling H. D. ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Eur J Biochem. 1998 Aug 1;255(3):570–579. doi: 10.1046/j.1432-1327.1998.2550570.x. [DOI] [PubMed] [Google Scholar]
  10. Ferrari D. M., Söling H. D. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J. 1999 Apr 1;339(Pt 1):1–10. [PMC free article] [PubMed] [Google Scholar]
  11. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  12. Füllekrug J., Sönnichsen B., Wünsch U., Arseven K., Nguyen Van P., Söling H. D., Mieskes G. CaBP1, a calcium binding protein of the thioredoxin family, is a resident KDEL protein of the ER and not of the intermediate compartment. J Cell Sci. 1994 Oct;107(Pt 10):2719–2727. doi: 10.1242/jcs.107.10.2719. [DOI] [PubMed] [Google Scholar]
  13. GOLDBERGER R. F., EPSTEIN C. J., ANFINSEN C. B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem. 1963 Feb;238:628–635. [PubMed] [Google Scholar]
  14. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  15. Günther R., Srinivasan M., Haugejorden S., Green M., Ehbrecht I. M., Küntzel H. Functional replacement of the Saccharomyces cerevisiae Trg1/Pdi1 protein by members of the mammalian protein disulfide isomerase family. J Biol Chem. 1993 Apr 15;268(11):7728–7732. [PubMed] [Google Scholar]
  16. Hayano T., Hirose M., Kikuchi M. Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Lett. 1995 Dec 27;377(3):505–511. doi: 10.1016/0014-5793(95)01410-1. [DOI] [PubMed] [Google Scholar]
  17. Johnston M., Davis R. W. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Aug;4(8):1440–1448. doi: 10.1128/mcb.4.8.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klappa P., Freedman R. B., Zimmermann R. Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. Eur J Biochem. 1995 Sep 15;232(3):755–764. [PubMed] [Google Scholar]
  19. Klappa P., Hawkins H. C., Freedman R. B. Interactions between protein disulphide isomerase and peptides. Eur J Biochem. 1997 Aug 15;248(1):37–42. doi: 10.1111/j.1432-1033.1997.t01-1-00037.x. [DOI] [PubMed] [Google Scholar]
  20. Klappa P., Mayinger P., Pipkorn R., Zimmermann M., Zimmermann R. A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes. EMBO J. 1991 Oct;10(10):2795–2803. doi: 10.1002/j.1460-2075.1991.tb07828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klappa P., Ruddock L. W., Darby N. J., Freedman R. B. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998 Feb 16;17(4):927–935. doi: 10.1093/emboj/17.4.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klappa P., Zimmermann M., Zimmermann R. The membrane proteins TRAMp and sec61 alpha p may be involved in post-translational transport of presecretory proteins into mammalian microsomes. FEBS Lett. 1994 Mar 21;341(2-3):281–287. doi: 10.1016/0014-5793(94)80473-7. [DOI] [PubMed] [Google Scholar]
  23. Koivunen P., Pirneskoski A., Karvonen P., Ljung J., Helaakoski T., Notbohm H., Kivirikko K. I. The acidic C-terminal domain of protein disulfide isomerase is not critical for the enzyme subunit function or for the chaperone or disulfide isomerase activities of the polypeptide. EMBO J. 1999 Jan 4;18(1):65–74. doi: 10.1093/emboj/18.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kramer W., Kramer B., Williamson M. S., Fogel S. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol. 1989 Oct;171(10):5339–5346. doi: 10.1128/jb.171.10.5339-5346.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laboissiere M. C., Sturley S. L., Raines R. T. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem. 1995 Nov 24;270(47):28006–28009. doi: 10.1074/jbc.270.47.28006. [DOI] [PubMed] [Google Scholar]
  27. Lambert N., Freedman R. B. Structural properties of homogeneous protein disulphide-isomerase from bovine liver purified by a rapid high-yielding procedure. Biochem J. 1983 Jul 1;213(1):225–234. doi: 10.1042/bj2130225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lundström J., Krause G., Holmgren A. A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease. J Biol Chem. 1992 May 5;267(13):9047–9052. [PubMed] [Google Scholar]
  29. Lyles M. M., Gilbert H. F. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry. 1991 Jan 22;30(3):613–619. doi: 10.1021/bi00217a004. [DOI] [PubMed] [Google Scholar]
  30. Lyles M. M., Gilbert H. F. Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains. J Biol Chem. 1994 Dec 9;269(49):30946–30952. [PubMed] [Google Scholar]
  31. Mazzarella R. A., Srinivasan M., Haugejorden S. M., Green M. ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem. 1990 Jan 15;265(2):1094–1101. [PubMed] [Google Scholar]
  32. Noiva R., Freedman R. B., Lennarz W. J. Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J Biol Chem. 1993 Sep 15;268(26):19210–19217. [PubMed] [Google Scholar]
  33. Rothblatt J., Schekman R. A hitchhiker's guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 1989;32:3–36. doi: 10.1016/s0091-679x(08)61165-6. [DOI] [PubMed] [Google Scholar]
  34. Rowling P. J., McLaughlin S. H., Pollock G. S., Freedman R. B. A single purification procedure for the major resident proteins of the ER lumen: endoplasmin, BiP, calreticulin and protein disulfide isomerase. Protein Expr Purif. 1994 Aug;5(4):331–336. doi: 10.1006/prep.1994.1049. [DOI] [PubMed] [Google Scholar]
  35. Rupp K., Birnbach U., Lundström J., Van P. N., Söling H. D. Effects of CaBP2, the rat analog of ERp72, and of CaBP1 on the refolding of denatured reduced proteins. Comparison with protein disulfide isomerase. J Biol Chem. 1994 Jan 28;269(4):2501–2507. [PubMed] [Google Scholar]
  36. Song J. L., Wang C. C. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur J Biochem. 1995 Jul 15;231(2):312–316. doi: 10.1111/j.1432-1033.1995.tb20702.x. [DOI] [PubMed] [Google Scholar]
  37. Tachikawa H., Takeuchi Y., Funahashi W., Miura T., Gao X. D., Fujimoto D., Mizunaga T., Onodera K. Isolation and characterization of a yeast gene, MPD1, the overexpression of which suppresses inviability caused by protein disulfide isomerase depletion. FEBS Lett. 1995 Aug 7;369(2-3):212–216. doi: 10.1016/0014-5793(95)00750-4. [DOI] [PubMed] [Google Scholar]
  38. Van P. N., Peter F., Söling H. D. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J Biol Chem. 1989 Oct 15;264(29):17494–17501. [PubMed] [Google Scholar]
  39. Van P. N., Rupp K., Lampen A., Söling H. D. CaBP2 is a rat homolog of ERp72 with proteindisulfide isomerase activity. Eur J Biochem. 1993 Apr 15;213(2):789–795. doi: 10.1111/j.1432-1033.1993.tb17821.x. [DOI] [PubMed] [Google Scholar]
  40. Vuori K., Myllylä R., Pihlajaniemi T., Kivirikko K. I. Expression and site-directed mutagenesis of human protein disulfide isomerase in Escherichia coli. This multifunctional polypeptide has two independently acting catalytic sites for the isomerase activity. J Biol Chem. 1992 Apr 15;267(11):7211–7214. [PubMed] [Google Scholar]
  41. Walker K. W., Gilbert H. F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem. 1997 Apr 4;272(14):8845–8848. doi: 10.1074/jbc.272.14.8845. [DOI] [PubMed] [Google Scholar]
  42. Walker K. W., Lyles M. M., Gilbert H. F. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry. 1996 Feb 13;35(6):1972–1980. doi: 10.1021/bi952157n. [DOI] [PubMed] [Google Scholar]
  43. Westphal V., Darby N. J., Winther J. R. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo. J Mol Biol. 1999 Mar 5;286(4):1229–1239. doi: 10.1006/jmbi.1999.2560. [DOI] [PubMed] [Google Scholar]
  44. Wetterau J. R., Combs K. A., Spinner S. N., Joiner B. J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990 Jun 15;265(17):9800–9807. [PubMed] [Google Scholar]
  45. Whiteley E. M., Hsu T. A., Betenbaugh M. J. Thioredoxin domain non-equivalence and anti-chaperone activity of protein disulfide isomerase mutants in vivo. J Biol Chem. 1997 Sep 5;272(36):22556–22563. doi: 10.1074/jbc.272.36.22556. [DOI] [PubMed] [Google Scholar]
  46. Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES