Abstract
Thrombin, a critical enzyme in the coagulation cascade, has also been associated with angiogenesis and activation of the zymogen form of matrix metalloproteinase-2 (MMP-2 or gelatinase-A). We show that thrombin activated pro-MMP-2 in a dose- and time-dependent manner in cultured human umbilical-vein endothelial cells (HUVECs) to generate a catalytically active 63 kDa protein that accumulated as the predominant form in the conditioned medium. This 63 kDa thrombin-activated MMP-2 is distinct from the 62 kDa species found following concanavalin A or PMA stimulated pro-MMP-2 activation. Hirudin and leupeptin blocked thrombin-induced pro-MMP-2 activation, demonstrating that the proteolytic activity of thrombin is essential. However, activation was also dependent upon membrane-type-MMP (MT-MMP) action, since it was blocked by EDTA, o-phenanthroline, hydroxamate metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-4, but not TIMP-1. Thrombin inefficiently cleaved recombinant 72 kDa pro-MMP-2, but efficiently cleaved the 64 kDa MT-MMP-processed intermediate form in the presence of cells. Thrombin also rapidly (within 1 h) increased cellular MT-MMP activity, and at longer time points (>6 h) it increased expression of MT1-MMP mRNA and protein. Thus signalling via proteinase-activated receptors (PARs) may play a role in thrombin-induced MMP-2 activation, though this does not appear to involve PAR1, PAR2, or PAR4 in HUVECs. These results indicate that in HUVECs the activation of pro-MMP-2 by thrombin involves increased MT-MMP activity and preferential cleavage of the MT-MMP-processed 64 kDa MMP-2 form in the presence of cells. The integration of these proteinase systems in the vascular endothelium may be important during thrombogenesis and tissue remodelling associated with neovascularization.
Full Text
The Full Text of this article is available as a PDF (242.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson S. J., Crabbe T., Cowell S., Ward R. V., Butler M. J., Sato H., Seiki M., Reynolds J. J., Murphy G. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem. 1995 Dec 22;270(51):30479–30485. doi: 10.1074/jbc.270.51.30479. [DOI] [PubMed] [Google Scholar]
- Baramova E. N., Bajou K., Remacle A., L'Hoir C., Krell H. W., Weidle U. H., Noel A., Foidart J. M. Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett. 1997 Mar 24;405(2):157–162. doi: 10.1016/s0014-5793(97)00175-0. [DOI] [PubMed] [Google Scholar]
- Butler G. S., Will H., Atkinson S. J., Murphy G. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997 Mar 1;244(2):653–657. doi: 10.1111/j.1432-1033.1997.t01-1-00653.x. [DOI] [PubMed] [Google Scholar]
- Coughlin S. R. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11023–11027. doi: 10.1073/pnas.96.20.11023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coussens L. M., Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol. 1996 Nov;3(11):895–904. doi: 10.1016/s1074-5521(96)90178-7. [DOI] [PubMed] [Google Scholar]
- Foda H. D., George S., Conner C., Drews M., Tompkins D. C., Zucker S. Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: a protein kinase C-dependent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest. 1996 Feb;74(2):538–545. [PubMed] [Google Scholar]
- Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res. 1986 Feb;46(2):467–473. [PubMed] [Google Scholar]
- Galis Z. S., Kranzhöfer R., Fenton J. W., 2nd, Libby P. Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997 Mar;17(3):483–489. doi: 10.1161/01.atv.17.3.483. [DOI] [PubMed] [Google Scholar]
- Haralabopoulos G. C., Grant D. S., Kleinman H. K., Maragoudakis M. E. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol. 1997 Jul;273(1 Pt 1):C239–C245. doi: 10.1152/ajpcell.1997.273.1.C239. [DOI] [PubMed] [Google Scholar]
- Harvey R. P., Degryse E., Stefani L., Schamber F., Cazenave J. P., Courtney M., Tolstoshev P., Lecocq J. P. Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinalis. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1084–1088. doi: 10.1073/pnas.83.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbert J. M., Dupuy E., Laplace M. C., Zini J. M., Bar Shavit R., Tobelem G. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochem J. 1994 Oct 1;303(Pt 1):227–231. doi: 10.1042/bj3030227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraoka N., Allen E., Apel I. J., Gyetko M. R., Weiss S. J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 1998 Oct 30;95(3):365–377. doi: 10.1016/s0092-8674(00)81768-7. [DOI] [PubMed] [Google Scholar]
- Hofmann A., Laue S., Rost A. K., Scherbaum W. A., Aust G. mRNA levels of membrane-type 1 matrix metalloproteinase (MT1-MMP), MMP-2, and MMP-9 and of their inhibitors TIMP-2 and TIMP-3 in normal thyrocytes and thyroid carcinoma cell lines. Thyroid. 1998 Mar;8(3):203–214. doi: 10.1089/thy.1998.8.203. [DOI] [PubMed] [Google Scholar]
- Imai K., Ohuchi E., Aoki T., Nomura H., Fujii Y., Sato H., Seiki M., Okada Y. Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res. 1996 Jun 15;56(12):2707–2710. [PubMed] [Google Scholar]
- Itoh T., Tanioka M., Yoshida H., Yoshioka T., Nishimoto H., Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998 Mar 1;58(5):1048–1051. [PubMed] [Google Scholar]
- Kahn M. L., Nakanishi-Matsui M., Shapiro M. J., Ishihara H., Coughlin S. R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999 Mar;103(6):879–887. doi: 10.1172/JCI6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawabata A., Saifeddine M., Al-Ani B., Leblond L., Hollenberg M. D. Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR2 by PAR1-targeted ligands. J Pharmacol Exp Ther. 1999 Jan;288(1):358–370. [PubMed] [Google Scholar]
- Lewalle J. M., Munaut C., Pichot B., Cataldo D., Baramova E., Foidart J. M. Plasma membrane-dependent activation of gelatinase A in human vascular endothelial cells. J Cell Physiol. 1995 Dec;165(3):475–483. doi: 10.1002/jcp.1041650305. [DOI] [PubMed] [Google Scholar]
- Li L., Eisen A. Z., Sturman E., Seltzer J. L. Protein tyrosine phosphorylation in signalling pathways leading to the activation of gelatinase A: activation of gelatinase A by treatment with the protein tyrosine phosphatase inhibitor sodium orthovanadate. Biochim Biophys Acta. 1998 Oct 21;1405(1-3):110–120. doi: 10.1016/s0167-4889(98)00091-3. [DOI] [PubMed] [Google Scholar]
- Llano E., Pendás A. M., Freije J. P., Nakano A., Knäuper V., Murphy G., López-Otin C. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res. 1999 Jun 1;59(11):2570–2576. [PubMed] [Google Scholar]
- Markwardt F. Pharmacology of hirudin: one hundred years after the first report of the anticoagulant agent in medicinal leeches. Biomed Biochim Acta. 1985;44(7-8):1007–1013. [PubMed] [Google Scholar]
- Matsumoto S., Katoh M., Saito S., Watanabe T., Masuho Y. Identification of soluble type of membrane-type matrix metalloproteinase-3 formed by alternatively spliced mRNA. Biochim Biophys Acta. 1997 Nov 1;1354(2):159–170. doi: 10.1016/s0167-4781(97)00120-6. [DOI] [PubMed] [Google Scholar]
- Nguyen M., Arkell J., Jackson C. J. Thrombin rapidly and efficiently activates gelatinase A in human microvascular endothelial cells via a mechanism independent of active MT1 matrix metalloproteinase. Lab Invest. 1999 Apr;79(4):467–475. [PubMed] [Google Scholar]
- Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
- Saifeddine M., Roy S. S., Al-Ani B., Triggle C. R., Hollenberg M. D. Endothelium-dependent contractile actions of proteinase-activated receptor-2-activating peptides in human umbilical vein: release of a contracting factor via a novel receptor. Br J Pharmacol. 1998 Dec;125(7):1445–1454. doi: 10.1038/sj.bjp.0702213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T., Kondo T., Fujisawa T., Seiki M., Ito A. Furin-independent pathway of membrane type 1-matrix metalloproteinase activation in rabbit dermal fibroblasts. J Biol Chem. 1999 Dec 24;274(52):37280–37284. doi: 10.1074/jbc.274.52.37280. [DOI] [PubMed] [Google Scholar]
- Sawicki G., Salas E., Murat J., Miszta-Lane H., Radomski M. W. Release of gelatinase A during platelet activation mediates aggregation. Nature. 1997 Apr 10;386(6625):616–619. doi: 10.1038/386616a0. [DOI] [PubMed] [Google Scholar]
- Schmidt V. A., Nierman W. C., Maglott D. R., Cupit L. D., Moskowitz K. A., Wainer J. A., Bahou W. F. The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem. 1998 Jun 12;273(24):15061–15068. doi: 10.1074/jbc.273.24.15061. [DOI] [PubMed] [Google Scholar]
- Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
- Tesfamariam B. Distinct receptors and signaling pathways in alpha-thrombin- and thrombin receptor peptide-induced vascular contractions. Circ Res. 1994 May;74(5):930–936. doi: 10.1161/01.res.74.5.930. [DOI] [PubMed] [Google Scholar]
- Teti A., Farina A. R., Villanova I., Tiberio A., Tacconelli A., Sciortino G., Chambers A. F., Gulino A., Mackay A. R. Activation of MMP-2 by human GCT23 giant cell tumour cells induced by osteopontin, bone sialoprotein and GRGDSP peptides is RGD and cell shape change dependent. Int J Cancer. 1998 Jul 3;77(1):82–93. doi: 10.1002/(sici)1097-0215(19980703)77:1<82::aid-ijc14>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Tsopanoglou N. E., Pipili-Synetos E., Maragoudakis M. E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am J Physiol. 1993 May;264(5 Pt 1):C1302–C1307. doi: 10.1152/ajpcell.1993.264.5.C1302. [DOI] [PubMed] [Google Scholar]
- Velasco G., Cal S., Merlos-Suárez A., Ferrando A. A., Alvarez S., Nakano A., Arribas J., López-Otín C. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000 Feb 15;60(4):877–882. [PubMed] [Google Scholar]
- Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
- Will H., Atkinson S. J., Butler G. S., Smith B., Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996 Jul 19;271(29):17119–17123. doi: 10.1074/jbc.271.29.17119. [DOI] [PubMed] [Google Scholar]
- Wong H., Anderson W. D., Cheng T., Riabowol K. T. Monitoring mRNA expression by polymerase chain reaction: the "primer-dropping" method. Anal Biochem. 1994 Dec;223(2):251–258. doi: 10.1006/abio.1994.1581. [DOI] [PubMed] [Google Scholar]
- Zucker S., Conner C., DiMassmo B. I., Ende H., Drews M., Seiki M., Bahou W. F. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem. 1995 Oct 6;270(40):23730–23738. doi: 10.1074/jbc.270.40.23730. [DOI] [PubMed] [Google Scholar]
- Zucker S., Mirza H., Conner C. E., Lorenz A. F., Drews M. H., Bahou W. F., Jesty J. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer. 1998 Mar 2;75(5):780–786. doi: 10.1002/(sici)1097-0215(19980302)75:5<780::aid-ijc19>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]