Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):225–232. doi: 10.1042/0264-6021:3570225

Active-site mutations impairing the catalytic function of the catalytic subunit of human protein phosphatase 2A permit baculovirus-mediated overexpression in insect cells.

T Myles 1, K Schmidt 1, D R Evans 1, P Cron 1, B A Hemmings 1
PMCID: PMC1221945  PMID: 11415453

Abstract

Members of the phosphoprotein phosphatase (PPP) family of protein serine/threonine phosphatases, including protein phosphatase (PP)1, PP2A and PP2B, share invariant active-site residues that are critical for catalytic function [Zhuo, Clemens, Stone and Dixon (1994) J. Biol. Chem. 269, 26234-26238]. Mutation of the active-site residues Asp(88) or His(118) within the human PP2A catalytic subunit (PP2Ac)alpha impaired catalytic activity in vitro; the D88N and H118N substitutions caused a 9- and 23-fold reduction in specific activity respectively, when compared with wild-type recombinant PP2Ac, indicating an important role for these residues in catalysis. Consistent with this, the D88N and H118N substituted forms failed to provide PP2A function in vivo, because, unlike wild-type human PP2Acalpha, neither substituted for the endogenous PP2Ac enzyme of budding yeast. Relative to wild-type PP2Ac, the active-site mutants were dramatically overexpressed in High Five insect cells using the baculovirus system. Milligram quantities of PP2Ac were purified from 1x10(9) High Five cells and the kinetic constants for dephosphorylation of the peptide RRA(pT)VA (single-letter amino-acid notation) by PP2Ac (K(m)=337.5 microM; k(cat)=170 s(-1)) and D88N (K(m)=58.4 microM; k(cat)=2 s(-1)) were determined. The results show that the substitution impairs catalysis severely without a significant effect on substrate binding, consistent with the PPP catalytic mechanism. Combination of the baculovirus and yeast systems provides a strategy whereby the structure-function of PP2Ac may be fully explored, a goal which has previously proven difficult, owing to the stringent auto-regulatory control of PP2Ac protein levels in vivo.

Full Text

The Full Text of this article is available as a PDF (224.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Murrani S. W., Woodgett J. R., Damuni Z. Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochem J. 1999 Jul 15;341(Pt 2):293–298. [PMC free article] [PubMed] [Google Scholar]
  2. Andjelković N., Zolnierowicz S., Van Hoof C., Goris J., Hemmings B. A. The catalytic subunit of protein phosphatase 2A associates with the translation termination factor eRF1. EMBO J. 1996 Dec 16;15(24):7156–7167. [PMC free article] [PubMed] [Google Scholar]
  3. Baharians Z., Schönthal A. H. Autoregulation of protein phosphatase type 2A expression. J Biol Chem. 1998 Jul 24;273(30):19019–19024. doi: 10.1074/jbc.273.30.19019. [DOI] [PubMed] [Google Scholar]
  4. Baharians Z., Schönthal A. H. Reduction of Ha-ras-induced cellular transformation by elevated expression of protein phosphatase type 2A. Mol Carcinog. 1999 Apr;24(4):246–254. doi: 10.1002/(sici)1098-2744(199904)24:4<246::aid-mc2>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  5. Barford D., Das A. K., Egloff M. P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998;27:133–164. doi: 10.1146/annurev.biophys.27.1.133. [DOI] [PubMed] [Google Scholar]
  6. Brandt H., Capulong Z. L., Lee E. Y. Purification and properties of rabbit liver phosphorylase phosphatase. J Biol Chem. 1975 Oct 25;250(20):8038–8044. [PubMed] [Google Scholar]
  7. Brandt H., Killilea S. D., Lee E. Y. Activation of phosphorylase phosphatase by a novel procedure: evidence for a regulatory mechanism involving the release of a catalytic subunit from enxyme-inhibitor complex(es) of higher molecular weight. Biochem Biophys Res Commun. 1974 Nov 27;61(2):598–604. doi: 10.1016/0006-291x(74)90999-1. [DOI] [PubMed] [Google Scholar]
  8. Chung H., Brautigan D. L. Protein phosphatase 2A suppresses MAP kinase signalling and ectopic protein expression. Cell Signal. 1999 Aug;11(8):575–580. doi: 10.1016/s0898-6568(99)00033-9. [DOI] [PubMed] [Google Scholar]
  9. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  10. Egloff M. P., Cohen P. T., Reinemer P., Barford D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol. 1995 Dec 15;254(5):942–959. doi: 10.1006/jmbi.1995.0667. [DOI] [PubMed] [Google Scholar]
  11. Evans D. R., Hemmings B. A. Signal transduction. What goes up must come down. Nature. 1998 Jul 2;394(6688):23–24. doi: 10.1038/27782. [DOI] [PubMed] [Google Scholar]
  12. Evans D. R., Myles T., Hofsteenge J., Hemmings B. A. Functional expression of human PP2Ac in yeast permits the identification of novel C-terminal and dominant-negative mutant forms. J Biol Chem. 1999 Aug 20;274(34):24038–24046. doi: 10.1074/jbc.274.34.24038. [DOI] [PubMed] [Google Scholar]
  13. Evans D. R., Stark M. J. Mutations in the Saccharomyces cerevisiae type 2A protein phosphatase catalytic subunit reveal roles in cell wall integrity, actin cytoskeleton organization and mitosis. Genetics. 1997 Feb;145(2):227–241. doi: 10.1093/genetics/145.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  15. Hendrix P., Mayer-Jackel R. E., Cron P., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 1993 Jul 15;268(20):15267–15276. [PubMed] [Google Scholar]
  16. Hendrix P., Turowski P., Mayer-Jaekel R. E., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem. 1993 Apr 5;268(10):7330–7337. [PubMed] [Google Scholar]
  17. Huang H. B., Horiuchi A., Goldberg J., Greengard P., Nairn A. C. Site-directed mutagenesis of amino acid residues of protein phosphatase 1 involved in catalysis and inhibitor binding. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3530–3535. doi: 10.1073/pnas.94.8.3530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  19. Kamibayashi C., Estes R., Lickteig R. L., Yang S. I., Craft C., Mumby M. C. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J Biol Chem. 1994 Aug 5;269(31):20139–20148. [PubMed] [Google Scholar]
  20. Kamibayashi C., Estes R., Slaughter C., Mumby M. C. Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. J Biol Chem. 1991 Jul 15;266(20):13251–13260. [PubMed] [Google Scholar]
  21. Mayer-Jaekel R. E., Hemmings B. A. Protein phosphatase 2A--a 'ménage à trois'. Trends Cell Biol. 1994 Aug;4(8):287–291. doi: 10.1016/0962-8924(94)90219-4. [DOI] [PubMed] [Google Scholar]
  22. Mayer-Jaekel R. E., Ohkura H., Ferrigno P., Andjelkovic N., Shiomi K., Uemura T., Glover D. M., Hemmings B. A. Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J Cell Sci. 1994 Sep;107(Pt 9):2609–2616. doi: 10.1242/jcs.107.9.2609. [DOI] [PubMed] [Google Scholar]
  23. Mayer R. E., Hendrix P., Cron P., Matthies R., Stone S. R., Goris J., Merlevede W., Hofsteenge J., Hemmings B. A. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 1991 Apr 16;30(15):3589–3597. doi: 10.1021/bi00229a001. [DOI] [PubMed] [Google Scholar]
  24. McCright B., Rivers A. M., Audlin S., Virshup D. M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem. 1996 Sep 6;271(36):22081–22089. doi: 10.1074/jbc.271.36.22081. [DOI] [PubMed] [Google Scholar]
  25. McCright B., Virshup D. M. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem. 1995 Nov 3;270(44):26123–26128. doi: 10.1074/jbc.270.44.26123. [DOI] [PubMed] [Google Scholar]
  26. Millward T. A., Zolnierowicz S., Hemmings B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999 May;24(5):186–191. doi: 10.1016/s0968-0004(99)01375-4. [DOI] [PubMed] [Google Scholar]
  27. Ogris E., Du X., Nelson K. C., Mak E. K., Yu X. X., Lane W. S., Pallas D. C. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem. 1999 May 14;274(20):14382–14391. doi: 10.1074/jbc.274.20.14382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ogris E., Mudrak I., Mak E., Gibson D., Pallas D. C. Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol. 1999 Sep;73(9):7390–7398. doi: 10.1128/jvi.73.9.7390-7398.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Orgad S., Brewis N. D., Alphey L., Axton J. M., Dudai Y., Cohen P. T. The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett. 1990 Nov 26;275(1-2):44–48. doi: 10.1016/0014-5793(90)81435-q. [DOI] [PubMed] [Google Scholar]
  30. Stone S. R., Hofsteenge J., Hemmings B. A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry. 1987 Nov 17;26(23):7215–7220. doi: 10.1021/bi00397a003. [DOI] [PubMed] [Google Scholar]
  31. Takai A., Mieskes G. Inhibitory effect of okadaic acid on the p-nitrophenyl phosphate phosphatase activity of protein phosphatases. Biochem J. 1991 Apr 1;275(Pt 1):233–239. doi: 10.1042/bj2750233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Turowski P., Favre B., Campbell K. S., Lamb N. J., Hemmings B. A. Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur J Biochem. 1997 Aug 15;248(1):200–208. doi: 10.1111/j.1432-1033.1997.t01-1-00200.x. [DOI] [PubMed] [Google Scholar]
  33. Zhang J., Zhang Z., Brew K., Lee E. Y. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. Biochemistry. 1996 May 21;35(20):6276–6282. doi: 10.1021/bi952954l. [DOI] [PubMed] [Google Scholar]
  34. Zhuo S., Clemens J. C., Stone R. L., Dixon J. E. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis. J Biol Chem. 1994 Oct 21;269(42):26234–26238. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES