Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):233–240. doi: 10.1042/0264-6021:3570233

Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: possible involvement of oxygen free radicals.

G Wang 1, K O 1
PMCID: PMC1221946  PMID: 11415454

Abstract

Homocysteinaemia is an independent risk factor for atherosclerosis. The development of atherosclerosis involves monocyte chemoattractant protein 1 (MCP-1)-mediated monocyte recruitment to the lesion site. The action of MCP-1 is mostly via its interaction with MCP-1 receptor (CCR2), which is the major receptor for MCP-1 on the surface of monocytes. The objective of the present study was to investigate the effect of homocysteine on CCR2 expression in human THP-1 monocytes. Cells were incubated with various concentrations of homocysteine for 6, 12, 24 and 48 h. The expression of CCR2 mRNA was determined by nuclease protection assay and the CCR2 protein was measured by Western immunoblotting analysis. The binding of MCP-1 to CCR2 as a functional receptor on the monocyte surface was determined by flow cytometry. Homocysteine (0.05-0.2 mM) significantly enhanced the expression of CCR2 mRNA (129-209% of the control) and CCR2 protein (up to 183% of control) in these cells after 24 h of incubation. Stimulation of CCR2 expression was associated with a parallel increase in the binding activity of CCR2 (129-191% of control) as well as an enhanced chemotactic response of homocysteine-treated monocytes. Further investigation revealed that the levels of superoxide were significantly elevated in cells incubated with homocysteine for 12-48 h. The addition of superoxide dismutase, a scavenger of superoxide, to the culture medium abolished the stimulatory effect of homocysteine on CCR2 expression as well as the binding activity of the receptor. The stimulatory effect of homocysteine on the expression of CCR2 mRNA and the levels of CCR2 protein was also observed in human peripheral blood monocytes. In conclusion, the present study has clearly demonstrated that homocysteine stimulates CCR2 expression in monocytes, leading to an enhanced binding activity and chemotatic response. Homocysteine-induced superoxide formation might serve as one of the underlying mechanisms for this effect.

Full Text

The Full Text of this article is available as a PDF (253.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boring L., Gosling J., Cleary M., Charo I. F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998 Aug 27;394(6696):894–897. doi: 10.1038/29788. [DOI] [PubMed] [Google Scholar]
  2. Brown Z., Gerritsen M. E., Carley W. W., Strieter R. M., Kunkel S. L., Westwick J. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am J Pathol. 1994 Oct;145(4):913–921. [PMC free article] [PubMed] [Google Scholar]
  3. Charo I. F. CCR2: from cloning to the creation of knockout mice. Chem Immunol. 1999;72:30–41. doi: 10.1159/000058724. [DOI] [PubMed] [Google Scholar]
  4. Charo I. F., Myers S. J., Herman A., Franci C., Connolly A. J., Coughlin S. R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chow K., Cheung F., Lao T. T., O K. Effect of homocysteine on the production of nitric oxide in endothelial cells. Clin Exp Pharmacol Physiol. 1999 Oct;26(10):817–818. doi: 10.1046/j.1440-1681.1999.03133.x. [DOI] [PubMed] [Google Scholar]
  6. Clarke R., Daly L., Robinson K., Naughten E., Cahalane S., Fowler B., Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991 Apr 25;324(17):1149–1155. doi: 10.1056/NEJM199104253241701. [DOI] [PubMed] [Google Scholar]
  7. Duell P. B., Malinow M. R. Homocyst(e)ine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol. 1997 Feb;8(1):28–34. doi: 10.1097/00041433-199702000-00007. [DOI] [PubMed] [Google Scholar]
  8. Faggiotto A., Ross R., Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984 Jul-Aug;4(4):323–340. doi: 10.1161/01.atv.4.4.323. [DOI] [PubMed] [Google Scholar]
  9. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  10. Han K. H., Chang M. K., Boullier A., Green S. R., Li A., Glass C. K., Quehenberger O. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. J Clin Invest. 2000 Sep;106(6):793–802. doi: 10.1172/JCI10052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Han K. H., Tangirala R. K., Green S. R., Quehenberger O. Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol. 1998 Dec;18(12):1983–1991. doi: 10.1161/01.atv.18.12.1983. [DOI] [PubMed] [Google Scholar]
  12. Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harker L. A., Slichter S. J., Scott C. R., Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543. doi: 10.1056/NEJM197409122911101. [DOI] [PubMed] [Google Scholar]
  14. Harvath L., Falk W., Leonard E. J. Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Methods. 1980;37(1):39–45. doi: 10.1016/0022-1759(80)90179-9. [DOI] [PubMed] [Google Scholar]
  15. Ikeda U., Ikeda M., Minota S., Shimada K. Homocysteine increases nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells. Circulation. 1999 Mar 9;99(9):1230–1235. doi: 10.1161/01.cir.99.9.1230. [DOI] [PubMed] [Google Scholar]
  16. Jacobsen D. W. Hyperhomocysteinemia and oxidative stress: time for a reality check? Arterioscler Thromb Vasc Biol. 2000 May;20(5):1182–1184. doi: 10.1161/01.atv.20.5.1182. [DOI] [PubMed] [Google Scholar]
  17. Jing Q., Xin S. M., Zhang W. B., Wang P., Qin Y. W., Pei G. Lysophosphatidylcholine activates p38 and p42/44 mitogen-activated protein kinases in monocytic THP-1 cells, but only p38 activation is involved in its stimulated chemotaxis. Circ Res. 2000 Jul 7;87(1):52–59. doi: 10.1161/01.res.87.1.52. [DOI] [PubMed] [Google Scholar]
  18. Kang S. S., Wong P. W., Malinow M. R. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279–298. doi: 10.1146/annurev.nu.12.070192.001431. [DOI] [PubMed] [Google Scholar]
  19. Kitiyakara C., Gonin J., Massy Z., Wilcox C. S. Non-traditional cardiovascular disease risk factors in end-stage renal disease: oxidate stress and hyperhomocysteinemia. Curr Opin Nephrol Hypertens. 2000 Sep;9(5):477–487. doi: 10.1097/00041552-200009000-00004. [DOI] [PubMed] [Google Scholar]
  20. Li Y. S., Shyy Y. J., Wright J. G., Valente A. J., Cornhill J. F., Kolattukudy P. E. The expression of monocyte chemotactic protein (MCP-1) in human vascular endothelium in vitro and in vivo. Mol Cell Biochem. 1993 Sep 8;126(1):61–68. doi: 10.1007/BF01772208. [DOI] [PubMed] [Google Scholar]
  21. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996 Jul 1;98(1):5–7. doi: 10.1172/JCI118776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCully K. S. Homocysteine and vascular disease. Nat Med. 1996 Apr;2(4):386–389. doi: 10.1038/nm0496-386. [DOI] [PubMed] [Google Scholar]
  23. Nappo F., De Rosa N., Marfella R., De Lucia D., Ingrosso D., Perna A. F., Farzati B., Giugliano D. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA. 1999 Jun 9;281(22):2113–2118. doi: 10.1001/jama.281.22.2113. [DOI] [PubMed] [Google Scholar]
  24. Nelken N. A., Coughlin S. R., Gordon D., Wilcox J. N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest. 1991 Oct;88(4):1121–1127. doi: 10.1172/JCI115411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nygård O., Nordrehaug J. E., Refsum H., Ueland P. M., Farstad M., Vollset S. E. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997 Jul 24;337(4):230–236. doi: 10.1056/NEJM199707243370403. [DOI] [PubMed] [Google Scholar]
  26. O K., Lynn E. G., Chung Y. H., Siow Y. L., Man R. Y., Choy P. C. Homocysteine stimulates the production and secretion of cholesterol in hepatic cells. Biochim Biophys Acta. 1998 Aug 28;1393(2-3):317–324. doi: 10.1016/s0005-2760(98)00086-1. [DOI] [PubMed] [Google Scholar]
  27. Rauen U., Petrat F., Li T., De Groot H. Hypothermia injury/cold-induced apoptosis--evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. FASEB J. 2000 Oct;14(13):1953–1964. doi: 10.1096/fj.00-0071com. [DOI] [PubMed] [Google Scholar]
  28. Reape T. J., Groot P. H. Chemokines and atherosclerosis. Atherosclerosis. 1999 Dec;147(2):213–225. doi: 10.1016/s0021-9150(99)00346-9. [DOI] [PubMed] [Google Scholar]
  29. Refsum H., Ueland P. M., Nygård O., Vollset S. E. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31–62. doi: 10.1146/annurev.med.49.1.31. [DOI] [PubMed] [Google Scholar]
  30. Refsum H., Ueland P. M., Nygård O., Vollset S. E. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31–62. doi: 10.1146/annurev.med.49.1.31. [DOI] [PubMed] [Google Scholar]
  31. Rollins B. J., Yoshimura T., Leonard E. J., Pober J. S. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol. 1990 Jun;136(6):1229–1233. [PMC free article] [PubMed] [Google Scholar]
  32. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  33. Saccani A., Saccani S., Orlando S., Sironi M., Bernasconi S., Ghezzi P., Mantovani A., Sica A. Redox regulation of chemokine receptor expression. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2761–2766. doi: 10.1073/pnas.97.6.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stampfer M. J., Malinow M. R., Willett W. C., Newcomer L. M., Upson B., Ullmann D., Tishler P. V., Hennekens C. H. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA. 1992 Aug 19;268(7):877–881. [PubMed] [Google Scholar]
  35. Starkebaum G., Harlan J. M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986 Apr;77(4):1370–1376. doi: 10.1172/JCI112442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sung F. L., Slow Y. L., Wang G., Lynn E. G., O K. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 in endothelial cells leading to enhanced monocyte chemotaxis. Mol Cell Biochem. 2001 Jan;216(1-2):121–128. doi: 10.1023/a:1017383916068. [DOI] [PubMed] [Google Scholar]
  37. Takeya M., Yoshimura T., Leonard E. J., Takahashi K. Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 1993 May;24(5):534–539. doi: 10.1016/0046-8177(93)90166-e. [DOI] [PubMed] [Google Scholar]
  38. Tangirala R. K., Murao K., Quehenberger O. Regulation of expression of the human monocyte chemotactic protein-1 receptor (hCCR2) by cytokines. J Biol Chem. 1997 Mar 21;272(12):8050–8056. doi: 10.1074/jbc.272.12.8050. [DOI] [PubMed] [Google Scholar]
  39. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980 Aug;26(2):171–176. doi: 10.1002/ijc.2910260208. [DOI] [PubMed] [Google Scholar]
  40. Ueland P. M., Refsum H., Stabler S. P., Malinow M. R., Andersson A., Allen R. H. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem. 1993 Sep;39(9):1764–1779. [PubMed] [Google Scholar]
  41. Upchurch G. R., Jr, Welch G. N., Fabian A. J., Freedman J. E., Johnson J. L., Keaney J. F., Jr, Loscalzo J. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem. 1997 Jul 4;272(27):17012–17017. doi: 10.1074/jbc.272.27.17012. [DOI] [PubMed] [Google Scholar]
  42. Wang G., Siow Y. L., O K. Homocysteine stimulates nuclear factor kappaB activity and monocyte chemoattractant protein-1 expression in vascular smooth-muscle cells: a possible role for protein kinase C. Biochem J. 2000 Dec 15;352(Pt 3):817–826. [PMC free article] [PubMed] [Google Scholar]
  43. Weber C., Draude G., Weber K. S., Wübert J., Lorenz R. L., Weber P. C. Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis. 1999 Jul;145(1):115–123. doi: 10.1016/s0021-9150(99)00021-0. [DOI] [PubMed] [Google Scholar]
  44. Welch G. N., Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998 Apr 9;338(15):1042–1050. doi: 10.1056/NEJM199804093381507. [DOI] [PubMed] [Google Scholar]
  45. Wilcken D. E., Wang X. L., Adachi T., Hara H., Duarte N., Green K., Wilcken B. Relationship between homocysteine and superoxide dismutase in homocystinuria: possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1199–1202. doi: 10.1161/01.atv.20.5.1199. [DOI] [PubMed] [Google Scholar]
  46. Xu L., Rahimpour R., Ran L., Kong C., Biragyn A., Andrews J., Devries M., Wang J. M., Kelvin D. J. Regulation of CCR2 chemokine receptor mRNA stability. J Leukoc Biol. 1997 Nov;62(5):653–660. doi: 10.1002/jlb.62.5.653. [DOI] [PubMed] [Google Scholar]
  47. Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Särkioja T., Yoshimura T., Leonard E. J., Witztum J. L., Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5252–5256. doi: 10.1073/pnas.88.12.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang F., Slungaard A., Vercellotti G. M., Iadecola C. Superoxide-dependent cerebrovascular effects of homocysteine. Am J Physiol. 1998 Jun;274(6 Pt 2):R1704–R1711. doi: 10.1152/ajpregu.1998.274.6.R1704. [DOI] [PubMed] [Google Scholar]
  49. Zhou Y., Yang Y., Warr G., Bravo R. LPS down-regulates the expression of chemokine receptor CCR2 in mice and abolishes macrophage infiltration in acute inflammation. J Leukoc Biol. 1999 Feb;65(2):265–269. doi: 10.1002/jlb.65.2.265. [DOI] [PubMed] [Google Scholar]
  50. Zhu L., Bisgaier C. L., Aviram M., Newton R. S. 9-cis retinoic acid induces monocyte chemoattractant protein-1 secretion in human monocytic THP-1 cells. Arterioscler Thromb Vasc Biol. 1999 Sep;19(9):2105–2111. doi: 10.1161/01.atv.19.9.2105. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES